

3943 en - 2011.12 / b

DIGIDRIVE SK

Technical data guide (Sizes A to D and 2 to 6)

General Information

The manufacturer accepts no liability for any consequences resulting from inappropriate, negligent or incorrect installation or adjustment of the optional operating parameters of the equipment or from mismatching the variable speed drive with the motor.

The contents of this guide are believed to be correct at the time of printing. In the interests of a commitment to a policy of continuous development and improvement, the manufacturer reserves the right to change the specification of the product or its performance, or the contents of the guide, without notice.

All rights reserved. No parts of this guide may be reproduced or transmitted in any form or by any means, electrical or mechanical including photocopying, recording or by an information storage or retrieval system, without permission in writing from the publisher.

Drive software version

This product is supplied with the latest software version. If this drive is to be connected to an existing system or machine, all drive software versions should be verified to confirm the same functionality as drives of the same model already present. This may also apply to drives returned from LEROY-SOMER. If there is any doubt please contact the supplier of the product.

The software version of the drive can be checked by looking at Pr **11.29** and Pr **11.34**. This takes the form of xx.yy.zz where Pr **11.29** displays xx.yy and Pr **11.34** displays zz. (e.g. for software version 01.01.00, Pr **11.29** = 1.01 and Pr **11.34** displays 0).

Environmental statement

LEROY-SOMER is committed to minimising the environmental impacts of its manufacturing operations and of its products throughout their life cycle. To this end, we operate an Environmental Management System (EMS) which is certified to the International Standard ISO 14001. Further information on the EMS, our Environmental Policy and other relevant information is available on request, or can be found at www.greendrives.com.

The electronic variable-speed drives manufactured by LEROY-SOMER have the potential to save energy and reduce raw material consumption and scrap throughout their long working lifetime (through increased machine/process efficiency).

When the products eventually reach the end of their useful life, they must not be discarded but should instead be recycled by a specialist recycler of electronic equipment. Recyclers will find the products easy to dismantle. Many parts snap together and can be separated without the use of tools, whilst other parts are secured with conventional fasteners. Virtually all parts of the product are suitable for recycling.

Product packaging is of good quality and can be re-used. Large products are packed in wooden crates, while smaller products come in strong cardboard cartons which themselves have a high recycled fibre content. If not re-used, these containers can be recycled. Polythene, used on the protective film and bags for wrapping product, can be recycled in the same way.

When preparing to recycle or dispose of any product or packaging, please observe local legislation and best practice.

REACH legislation

EC Regulation 1907/2006 on the Registration, Evaluation, Authorisation and restriction of Chemicals (REACH) requires the supplier of an article to inform the recipient if it contains more than a specified proportion of any substance which is considered by the European Chemicals Agency (ECHA) to be a Substance of Very High Concern (SVHC) and is therefore listed by them as a candidate for compulsory authorisation.

For current information on how this requirement applies in relation to specific LEROY-SOMER products, please approach your usual contact in the first instance.

Contents

1	Technical data	5
1.1	Digidrive SK size A to D	
1.2	Digidrive SK size 2 to 6	
2	Derating curves and losses	18
- 2.1	Size A	
2.2	Size B	
2.3	Size C	
2.4	Size D	
2.5	Size 2	
2.6	Size 3	
2.7	Size 4	
2.8	Size 5	
2.9	Size 6	
2.10	Derating with glanding box and Cover kit (size A only)	
3	Drive voltage levels	40
3.1	Input voltage	
3.2	Single phase ratings (size 2 and 3)	
4	DC bus design	12
4 .1	Digidrive SK size A to D	
4.1	Digidrive SK size 2 to 6	
	-	
5	Mechanical installation	
5.1	Mounting methods	
5.2	Enclosing standard drive for high environmental protection	
5.3	Sizing a braking resistor	71
6	EMC	78
6.1	Ground leakage	78
6.2	Internal EMC filter	
6.3	Electromagnetic compatibility (EMC)	80
6.4	Digidrive SK size A to D	
6.5	Digidrive SK size 2 to 6	87
7	AC line reactors	104
8	Motor cable lengths	105
8.1	Digidrive SK size A to D	
8.2	Digidrive SK size 2 to 6	

9	General data	107
9.1	Ratings	
9.2	Input phase imbalance	
9.3	Ambient temperature	
9.4	Storage	
9.5	Altitude	107
9.6	Environmental protection rating	107
9.7	Humidity	107
9.8	Storage humidity	107
9.9	Pollution degree	107
9.10	Materials	107
9.11	Corrosive gases	108
9.12	Vibration	
9.13	Frequency accuracy	
9.14	Resolution	
9.15	Output frequency range	
9.16	Starts per hour	
9.17	Start-up time	
9.18	Serial communications	
9.19	Switching frequencies	
9.20	Harmonics	
9.21	Acoustic noise	109
10	I/O specification	110
10.1	Drive reset	
10.2	Sample/update times	
10.3	Task routine times	112
11	Supply types	113
11.1	AC supply requirements	113
11.2	Safety	113
11.3	Cables	113
11.4	Fuses	114
11.5	Ground connections	114
12	Ontions	116

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Options
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

Technical data 1

Digidrive SK size A to D 1.1

Figure 1-1 Model code explanation

1.1.1 Digidrive SK 110V size A and B units

Table 1-1 Ratings

Madal	Siz	e A	Siz	е В
Model	0.5 ML	1 ML	1.5 ML	2 ML
AC supply voltage and frequency	Single	e phase 100 to 12	20V ±10% 48Hz to	62Hz
Input displacement factor (cos∅)		>0	.97	
Nominal motor power (kW)	0.25	0.37	0.75	1.1
Nominal motor power (hp)	0.33	0.5	1.0	1.5
Output voltage and frequency	3 pha	ase, 0 to drive rati	ng (240), 0 to 1500)Hz**
100% RMS output current (A)	1.7	2.2	4.0	5.2
150% overload current for 60s (A)	2.55	3.3	6.0	7.8
Typical full load input current (A)	7.5	11	19.6	24.0
Maximum continuous input current (A)*				
Typical inrush current (A) (<10ms)	<′	10	12	2.5
Weight (kg)	1.	.0	1.3	356
Weight (lb)	2	.2	3	3
Internal EMC filter		Y	es	
DC bus terminals		N	lo	
Din rail mounting		Y	es	

^{*} For 3 phase input only, allowing for supply imbalance up to 2% negative phase sequence.

Table 1-2 Cables

Model		Size	e A	Siz	е В				
Model	-	0.5 ML	1 ML	1.5 ML	2 ML				
Recommended input supply fuse (A)	IEC gG	10	16	25	32				
(A)	Class CC	10	15	25	30				
Control cable****	mm ²	>0.5							
Control cable	AWG	20							
Recommended input cable*****	mm ²	1.0	1.5	4.	1.0				
recommended input cable	AWG	16	14	1	0				
Recommended motor cable*****	mm ²	•	1	.0					
recommended motor cable	AWG		1	6					
Recommended brake resistor*****	mm ²		1	.0					
Trecommended Brake resistor	AWG		1	6					

^{*****} The maximum size of wire for the power terminals is 2.5mm² (Size A), 4mm² (Size B and C) and 6mm² (size D)

Table 1-3 Braking resistor

Model	Siz	ze A	Size B		
Wiodel	0.5 ML	1 ML	1.5 ML	2 ML	
Minimum braking resistor value $(\Omega)^{******}$	N/A	N/A	28	3	
Recommended braking resistor value (Ω)	N/A	N/A	10	0	
Resistor peak power rating (kW)	N/A	N/A	1.	7	
Maximum braking current (A)	N/A	N/A	14	.8	

^{*****} Resistor tolerance ±10%

No dynamic braking available on the 110V Size A.

^{**} The 110V drives use a voltage doubler circuit on the input.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMO	AC line	Motor cable	General	I/O	Supply	0 "
data	and losses	levels	design	installation	EMC	reactors	lengths		specification		Options

Table 1-4 Cooling fan

Model		Siz	e A	Size B			
Wiodei		0.5 ML	1 ML	1.5 ML	2 ML		
Cooling fan installed		N	0	Yes			
Air flow	feet ³ /minute			10.6			
All HOW	m ³ /minute			0.	.3		

1.1.2 Digidrive SK 200V size A to D units

Table 1-5 Ratings

		Siz	e A			Siz	e B		Siz	e C		Size	D			
Model	0.5 M	1 M	1.2 M	1.5 M	2 M	/TL	2.5 I	M/TL	3.5 [W/TL	4.5 N	M/TL	5 TL			
	U.S IVI	I IVI	1.2 1	1.5 IVI	1 ph	3 ph	1 ph	3 ph	1 ph	3 ph	1 ph	3 ph	3 ph			
AC supply voltage and frequency	_	•	200 to :		Sing	le or 3		200 to to 62H	240V :	±10%	200 to 24	3 phase 0V ±10% o 62Hz	3 phase 200 to 240V ±10% 48Hz to 62Hz			
Input displacement factor (cos∅)								>0.97	7			l				
Nominal motor power (kW)	minal motor power (kW) 0.25 0.37 0.55 0.75 1.1 1.5 2.2 3							4								
Nominal motor power (hp)	0.33	0.50	0.75	1.0	1.	.5	2	.0	3	.0	3	3	5			
Output voltage and frequency				•	3 pha	ase, 0	to drive	e rating	(240),	0 to 15	00Hz		•			
100% RMS output current (A)	1.7	2.2	3.0	4.0	5.	.2	7	.0	9	.6	12	2.6	17			
150% overload current for 60s (A)	2.6	3.3	4.5	6	7.	.8	10).5	14	.4	18	3.9	25.5			
Typical full load input current (A)	4.3	5.8	8.1	10.5	14.2	6.7	17.4	8.7	23.2	11.9	23.6	12.5	15.7			
Maximum continuous input current (A)*						9.2		12.6		17		16.6	19.5			
Typical inrush current (A) (<10ms)		17	7.0			2	7.4		18	3.3		19.1	•			
Weight (kg)	0.9	95	1	.0	1.	.3	1	.4	2	.1		4.5				
Weight (lb)	ght (lb) 2.1		2	.2	2.	.9	3	.1	4	.6		9.9				
Internal EMC filter								Yes								
DC bus terminals		N	lo							Ye	S					
Din rail mounting				Yes								No				

^{*} For 3 phase input only, allowing for supply imbalance up to 2% negative phase sequence.

Table 1-6 Cables

			Siz	e A			Siz	еВ		Siz	e C		Size	D
Model		0.5 M	1 M	1 M 1.2 M	1.5 M	2 M/TL		2.5 M/TL		3.5 M/TL		4.5 M/TL		5 TL
		0.0 141	_ · ·•·		1.5 1	1 ph	3 ph	1 ph	3 ph	1 ph	3 ph	1 ph	3 ph	3 ph
Recommended input supply fuse (A)	IEC gG	6	10		16	16	10	20	16	25	20	25	16	20
rvecommended input supply luse (A)	Class CC	5	5 10		15	15 10 20 15			15	25	20	25	15	20
Control cable****	mm ²	≥0.5				≥0.5						≥0.5		
Control duble	AWG	20						2	20			20		
Recommended input cable*****	mm ²	1.0		1.5	2.5	1.5	2.5	1.5	4.0	2.5	6	2.5	2.5	
Trecommended input cable	AWG		16		14	12 14 12 14 10 12					12	10	12	12
Recommended motor cable*****	mm ²		1	.0	•		1	.0		1	.5		2.5	
Trecommended motor cable	AWG		1	16			1	6		1	4	1	4	12
ecommended brake resistor****	mm ²		1	.0			1	.0		1.5		2.5		
Tresemmentada Erako redictor	AWG		1	16			1	6		14				

^{****} The maximum size of wire for the control terminals is 2.5mm^2

Table 1-7 Braking resistor

Model		Siz	e A		Size B		Size C	Siz	e D
Wodei	0.5 M	1 M	1.2 M	1.5 M	2 M/TL	2.5 M/TL	3.5 M/TL	4.5 M/TL	5 TL
Minimum braking resistor value $(\Omega)^{******}$		68			28		28	20	20
Recommended braking resistor value (Ω)		200		150	10	00	50	40	30
Resistor peak power rating (kW)		0.9		1.1	1	.7	3.4	4.3	5.8
Maximum braking current (A)		6	.1		14	1.8	14.8	20	20

^{******} Resistor tolerance ±10%

^{*****} The maximum size of wire for the power terminals is 2.5mm² (Size A), 4mm² (Size B and C) and 6mm² (size D)

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Options
data	and losses	levels	design	installation	LIVIC	reactors	lengths	data	specification	types	Options

Table 1-8 Cooling fan

Model	Model		Size A				Size B		Size	e D
Model		0.5 M	1 M	1.2 M	1.5 M	2 M/TL	2.5 M/TL	3.5 M/TL	4.5 M/TL	5 TL
Cooling fan installed		No				Yes		Yes	Yes	
Air flow feet ³ /minute						10.6			30	30
m ³ /minute					0.3			0.84	0.84	

1.1.3 Digidrive SK 400V size B to D units

Table 1-9 Ratings

Model			Size B				Size C		Si	ze D
Model	1 T	1.2 T	1.5 T	2 T	2.5 T	3.5 T	4.5 T	5.5 T	7 T	10 T
AC supply voltage and frequency			3 phase 380 to 480V ±10% 48Hz to 62Hz							
Input displacement factor (cos∅)						>0.9	7		-	
Nominal motor power (kW)	0.37	0.55	0.75	1.1	1.5	2.2	3.0	4.0	5.5	7.5
Nominal motor power (hp)	0.5	0.75	1.0	1.5	2.0	3.0	3.0	5.0	7.5	10
Output voltage and frequency				3 p	hase, 0 to	drive rating	g (480), 0 to	1500Hz		
100% RMS output current (A)	1.3	1.7	2.1	2.8	3.8	5.1	7.2	9.0	13	16.5
150% overload current for 60s (A)	2	2.6	3.2	4.2	5.7	7.7	10.8	13.5	19.5	24.75
Typical full load input current (A)	1.7	2.5	3.1	4	5.2	7.3	9.5	11.9	12.4	15.6
Maximum continuous input current (A)*	2.5	3.1	3.75	4.6	5.9	9.6	11.2	13.4	14.3	16.9
Typical inrush current (A) (<10ms)			17.0				11.3	III		12
Weight (kg)		1.2		1	.3		2.1		4	1.7
Weight (lb)		2.7		2	.9		4.6		1	0.4
Internal EMC filter	Yes									
DC bus terminals	Yes									
Din rail mounting	Yes No					No				

^{*} For 3 phase input only, allowing for supply imbalance up to 2% negative phase sequence.

Table 1-10 Cables

Model				Size B				Size C		Siz	e D
Model		1 T	1.2 T	1.5 T	2 T	2.5 T	3.5 T	4.5 T	5.5 T	7 T	10 T
Recommended input supply fuse (A)	IEC gG	6				10	16			16	20
recommended input supply luse (A)	Class CC	5				10	15			15	20
Control cable****				≥0.5			≥0.5			≥0.5	
Control capic	AWG			20				20		2	20
Recommended input cable *****	mm ²	1.0					1	.5	2.5	2	5
recommended input cable	AWG	16					14 12			14	12
Recommended motor cable*****	mm ²			1.0			1.0 1.5			2	5
recommended motor cable	AWG			16			16 14			14	12
Recommended brake resistor	mm ²	1.5				1.5			2.5		
able****	AWG	14				14			1	12	

^{****} The maximum size of wire for the control terminals is 2.5mm^2

Table 1-11 Braking resistor

Model			Size B				Size C	Size D		
Wiodel	1 T	1.2 T	1.5 T	2 T	2.5 T	3.5 T	4.5 T	5.5 T	7 T	10 T
Minimum braking resistor value $(\Omega)^{******}$	100			100	55		53			
Recommended braking resistor value (Ω)	200			200	150	100	80	55		
Resistor peak power rating (kW)	3.4			3.4	4.6	6.9	8.7	12.6		
Maximum braking current (A)	8.3		8.3 8.3 15.1		5.1	15	5.7			

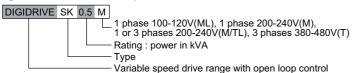
^{*****} Resistor tolerance ±10%

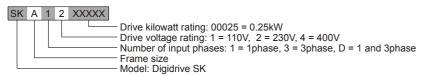
NOTE

The correct UL listed high speed / fast acting fuses (class CC or class J up to 30A and class J above 30A) can be used.

^{*****} The maximum size of wire for the power terminals is 2.5mm² (Size A), 4mm² (Size B and C) and 6mm² (size D)

Technical	Derating curves	Drive voltage	DC bus	Mechanical		AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

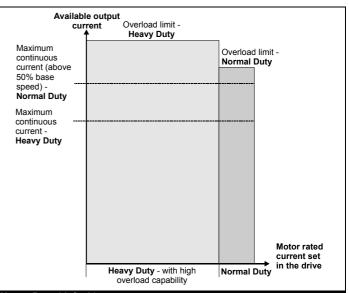

Table 1-12 Cooling fan


Model				Size B			Size C			Size D	
Model		1 T	1.2 T	1.5 T	2 T	2.5 T	3.5 T	4.5 T	5.5 T	7 T	10 T
Cooling fan installed		No			Yes		Yes			Yes	
Air flow	Air flow						10.6			30	30
m ³ /minute							0.3			0.84	0.84

Technical Derating curves Drive voltage DC bus Mechanical AC line Motor cable I/O General Supply EMC Options data design installation reactors lengths specification types and losses levels data

1.2 Digidrive SK size 2 to 6

Figure 1-2 Model code explanation



The Digidrive SK sizes 2 to 6 are dual rated.

The setting of the motor rated current determines which rating applies - Heavy Duty or Normal Duty.

The two ratings are compatible with motors designed to IEC60034.

The graph aside illustrates the difference between Normal Duty and Heavy Duty with respect to continuous current rating and short term overload limits.

Normal Duty

For applications which use self ventilated induction motors and require a low overload capability (e.g. fans, pumps).

Self ventilated induction motors require increased protection against overload due to the reduced cooling effect of the fan at low speed. To provide the correct level of protection the I²t software operates at a level which is speed dependent. This is illustrated in the graph below.

NOTE

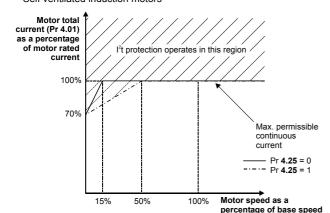
The speed at which the low speed protection takes effect can be changed by the setting of Pr **4.25**. The protection starts when the motor speed is below 15% of base speed when Pr **4.25** = 0 (default) and below 50% when Pr **4.25** = 1. See the *Digidrive SK Advanced User Guide*, Menu 4 for further details.

Heavy Duty (default)

For constant torque applications or applications which require a high overload capability (e.g. cranes, hoists).

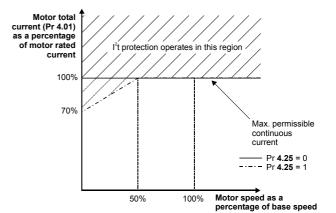
The thermal protection is set to protect force ventilated induction motors by default.

NOTE


If the application uses a self ventilated motor and increased thermal protection is required for speeds below 50% base speed, then this can be enabled by setting Pr **4.25** = 1.

See the Digidrive SK Advanced User Guide, Menu 4 for further details.

Operation of motor I²t protection (It.AC trip)


Motor I²t protection is fixed as shown below and is compatible with:

· Self ventilated induction motors

Motor I²t protection defaults to be compatible with:

· Forced ventilation induction motors

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

1.2.1 Typical short term overload limits

The maximum percentage overload limit changes depending on the induction motor only. Variations in motor rated current, motor rated power factor and motor leakage inductance all result in changes in the maximum possible overload. The exact value for a specific motor can be calculated using the equations detailed in Menu 4 in the *Digidrive SK Advanced User Guide*.

Table 1-13 Typical overload limits for size 2 to 5

	From cold	From 100% full load
Normal duty overload with motor rated current = drive rated current	110% for 215s	110% for 5s
Heavy duty overload with motor rated current = drive rated current	150% for 60s	150% for 8s

Table 1-14 Typical overload limits for size 6

	From cold	From 100% full load
Normal duty overload with motor rated current = drive rated current	110% for 165s	110% for 9s
Heavy duty overload with motor rated current	129% for 97s	129% for 15s

Generally the drive rated current is higher than the matching motor rated current allowing a higher level of overload than the default setting as illustrated by the example of a typical 4 pole motor.

The time allowed in the overload region is proportionally reduced at very low output frequency on some drive ratings.

NOTE

The maximum overload level which can be attained is independent of the speed.

1.2.2 Digidrive SK 200V size 2 to 4 units

Key:

- ♦ Refer to Table 1-13 on page 10 for typical overload limits
- * Typical input current

The values of typical input current are given to aid calculations for power flow and power loss (Normal Duty rating). The values of typical input current are stated for a balanced supply.

** Maximum continuous input current

The values of maximum continuous input current are given to aid the selection of cables and fuses. These values are stated for the worse case condition with the unusual combination of a stiff supply with bad balance (Normal Duty rating). The value stated for the maximum continuous input current would only been seen in one of the input phases. The current in the other two phases would be significantly lower.

The values of maximum input current are stated with a 2% negative phase-sequence imbalance and rated at the maximum supply fault current given in the following tables.

Table 1-15 Size 2 to 4 ratings

Madal		Size 2		Siz	ze 3		Size 4	
Model	4.5 TL	5.5 TL	8 TL	11 TL	16 TL	22 TL	27 TL	33 TL
AC supply voltage and frequency			3 phase	200 to 240Va	c ±10% 48 to	65Hz	•	
Input displacement factor (cos ∅)				>0.9)7			
		Nor	mal duty					
Nominal motor power at 220V (kW)	4.0	5.5	7.5	11	15	18.5	22	30
Nominal motor power at 230V (hp)	5.0	7.5	10	15	20	25	30	40
100% RMS output current (A)	15.5	22	28	42	54	68	80	104
		Hea	avy Duty		•	-	•	
Nominal motor power at 220V (kW)	3.0	4.0	5.5	7.5	11	15	18.5	22
Nominal motor power at 230V (hp)	3.0	5.0	7.5	10	15	20	25	30
100% RMS output current (A)	12.6	17	25	31	42	56	68	80
Peak current (A) ◆	18.9	25.5	37.5	46.5	63	84	102	120
Typical full load input current (A) *	13.4	18.2	24.2	35.4	46.8	62.1	72.1	94.5
Maximum continuous input current (A) **	18.1	22.6	28.3	43.1	54.3	68.9	78.1	99.9
Typical inrush current (A)		12			8		73	
Maximum supply fault current (kA)	100							
Weight (kg)		7		•	15	30		
Weight (lb)		15.4		3	3.1		66.1	

^{****} Resistor tolerance ±10%

[^] Semi-conductor fuse in series with HRC fuse or circuit breaker

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

Table 1-16 Size 2 and 3 fuses

Model	Model		Size 2		Size 3		
Woder			5.5 TL	8 TL	11 TL	16 TL	
Decemmended input	IEC gG	20	25	32	50	63	
Recommended input supply fuse (A)	Class CC	20	25				
capply lace (7 t)	Class J			30	45	60	

Table 1-17 Size 4 fuses

				Si	ze 4		
Model		22 TL	27 TL	33 TL	22 TL	27 TL	33 TL
			Option 1			Option 2 [^]	
	IEC gR	100	100	125			
Recommended input	Ferraz HSJ	90	100	125			
supply fuse (A)	IEC gG UL class J				90	100	125
	IEC class aR				160	160	200

Table 1-18 Size 2 to 4 cables

Model			Size 2		Siz	e 3		Size 4	
	•	4.5 TL	5.5 TL	8 TL	11 TL	16 TL	22 TL	27 TL	33 TL
Control cable	mm²		•	•	≥().5		•	•
Control cable	AWG				2	10			
Recommended input cable	mm²	4.0	4.0	6.0	16	25	25	35	70
Recommended input cable	AWG	12	10	8	6	4	3	3	1
Recommended motor	mm²	2.5	4.0	6.0	16	25	25	35	70
cable	AWG	14	10	8	6	4	3	3	1
Recommended brake	mm²	2.5	4.0	6.0	16	25	25	35	70
resistor	AWG	14	10	8	6	4	3	3	1

Table 1-19 Braking resistor (minimum resistance values and peak power rating for the braking resistor at 40°C)

Model		Size 2		Siz	e 3	Size 4			
Wodel	4.5 TL	5.5 TL	8 TL	11 TL	16 TL	22 TL	27 TL	33 TL	
Minimum braking resistor value $(\Omega)^{****}$		18		5	.0		5.0		
Resistor peak power rating (kW)		8.9		30).3		30.3		
Average power for 60s (kW)	6.0	8.0	8.9	13.1	19.3	22.5	27.8	30.3	

Table 1-20 Cooling fan

Model			Size 2		Siz	e 3	Size 4			
Model		4.5 TL	5.5 TL	8 TL	11 TL	16 TL	22 TL	27 TL	33 TL	
Air flow m ³ /hour		65			1	50	200			

NOTE

The class J fuses should be high speed or fast acting only.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Options
data	and losses	levels	design	installation	LIVIC	reactors	lengths	data	specification	types	Options

1.2.3 Digidrive SK 400V size 2 to 6 units

Key:

◆ Refer to Table 1-13 and Table 1-14 on page 10 for typical overload limits

* Typical input current

The values of typical input current are given to aid calculations for power flow and power loss (Normal Duty rating). The values of typical input current are stated for a balanced supply.

** Maximum continuous input current

The values of maximum continuous input current are given to aid the selection of cables and fuses. These values are stated for the worse case condition with the unusual combination of a stiff supply with bad balance (Normal Duty rating). The value stated for the maximum continuous input current would only been seen in one of the input phases. The current in the other two phases would be significantly lower.

The values of maximum input current are stated with a 2% negative phase-sequence imbalance and rated at the maximum supply fault current given in the following tables.

*** SK20T Power and current ratings

Digidrive SK size 2 to 6 are dual rated except for the SK20T which only has a Heavy Duty rating. However, if the current limit in Pr **4.07** is set to a maximum of 110% and the switching frequency is greater than 3kHz, then the drive can be used at a maximum continuous current higher than the Heavy Duty rating. Normal Duty ratings exist for the SK20T above 3kHz when the overload is reduced from the default value of 165% to 110%. If the current limit in Pr **4.07** is set higher than 110% then the Heavy Duty current ratings are applicable.

^^ The minimum resistance value specified is for a stand-alone drive only. If the drive is part of a common DC bus system a different value must be used. Contact the supplier of the drive for more information

Table 1-21 Size 2 to 4 ratings

Model		Siz	ze 2			Size 3			Size 4	
Model	8 T	11 T	16 T	20 T***	22 T	27 T	33 T	40 T	50 T	60 T
AC supply voltage and frequency				3 phase 3	80 to 480\	/ac ±10% -	48 to 65Hz			
Input displacement factor (cos ∅)					>0	.97				
			Norma	Duty						
Nominal motor power at 400V (kW)	7.5	11	15		18.5	22	30	37	45	55
Nominal motor power at 460V (hp)	10	15	20		25	30	40	50	60	75
100% RMS output current (A)	15.3	21	29		35	43	56	68	83	104
		•	Heavy	Duty		•				•
Nominal motor power at 400V (kW)	5.5	7.5	11	15	15	18.5	22	30	37	45
Nominal motor power at 460V (hp)	7.5	10	20	20	25	30	30	50	60	75
100% RMS output current (A)	13	16.5	25	29	32	40	46	60	74	96
Peak current (A) ◆	19.5	24.7	34.5	43.5	48	60	69	90	111	144
Typical full load input current (A) *	15.7	20.2	26.6	26.6	34.2	40.2	51.3	61.2	76.3	94.1
Maximum continuous input current (A) **	17	21.4	27.6	27.6	36.2	42.7	53.5	62.3	79.6	97.2
Typical inrush current (A)	cal inrush current (A) 24							37	7	'3
Maximum supply fault current (kA)	100					100		100		
Weight (kg)	7					15		30		
Weight (lb)	15.4					33.1		66.1		

^{****} Resistor tolerance ±10%

[^] Semi-conductor fuse in series with HRC fuse or circuit breaker

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

Table 1-22 Size 5 and 6 ratings

Mardal	Siz	ze 5	Siz	e 6		
Model	75 T	100 T	120 T	150 T		
AC supply voltage and frequency		3 phase 380 to 480\	/ac ±10% 48 to 65Hz	<u>I</u>		
Input displacement factor (cos ∅)		>0	.97			
_	N	Normal Duty				
Nominal motor power at 400V (kW)	75	90	110	132		
Nominal motor power at 460V (hp)	100	125	150	200		
100% RMS output current (A)	138	168	205	236		
		Heavy Duty		1		
Nominal motor power at 400V (kW)	55	75	90	110		
Nominal motor power at 460V (hp)	100	125	150	150		
100% RMS output current (A)	124	156	180	210		
Peak current (A) ♦	186	234	231	270		
Typical full load input current (A) *	126	152	224	247		
Maximum continuous input current (A) **	131	156	241	266		
Typical inrush current (A)	1	10				
Maximum supply fault current (kA)		11	00			
Weight (kg)	Ę	55	75			
Weight (lb)	12	1.3	16	5.3		

Table 1-23 Size 2 and 3 fuses

Model			Siz	e 2		Size 3				
Wiodei		8 T	11 T	16 T	20 T	22 T	27 T	33 T		
Recommended input	IEC gG	20	25	32	32	40	50	63		
supply fuse (A)	Class CC	20	25							
supply luse (A)	Class J			30	30	40	45	60		

Table 1-24 Size 4 to 6 fuses

				Siz	e 4			Size 5				Size 6			
Model		40 T	50 T	60 T	40 T	50 T	60 T	75 T	100 T	75 T	100 T	120 T	150 T	120 T	150 T
		Option 1			С	ption 2	۸	Opti	on 1	Optio	on 2^	Opti	on 1	Option 2 [^]	
	IEC gR	80	110	125				200	250			315	315		
Recommended input	Ferraz HSJ	80	110	125				175	225			300	300		
supply fuse (A)	IEC gG UL class J				80	100	125			160	200			250	300
	IEC class aR				160	200	200			200	250			315	350

Table 1-25 Size 2 to 4 cables

Model			Siz	e 2			Size 3		Size 4		
Wiodei		8 T	11 T	16 T	20 T	22 T	27 T	33 T	40 T	50 T	60 T
Control cable	mm²					≥0).5				
Control cable	AWG					2	0				
Recommended input cable	mm²	4.0	4.0	6.0	6.0	10	16	25	25	35	70
Recommended input cable	AWG	12	10	8	8	6	6	4	3	2	1
Recommended motor cable	mm²	2.5	4.0	6.0	6.0	10	16	25	25	35	70
Recommended motor cable	AWG	14	10	8	8	6	6	4	3	2	1
Recommended brake resistor	mm²	2.5	4.0	6.0	6.0	10	16	25	25	35	70
Recommended blake lesistol	AWG	14	10	8	8	6	6	4	3	2	1

Technical	Derating curves	Drive voltage	DC bus	Mechanical	E140	AC line	Motor cable	General	I/O	Supply	0 "
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

Table 1-26 Size 5 and 6 cables

Madal		Siz	e 5	Siz	ze 6			
Model		75 T	100 T	120 T	150 T			
Control cable	mm²		≥().5	•			
Control cable	AWG		20					
Decemmended input cable	mm²	95	120	2 x 70	2 x 120			
Recommended input cable	AWG	2/0	4/0	2 x 2/0	2 x 4/0			
Recommended motor cable	mm²	95	120	2 x 70	2 x 120			
Recommended motor cable	AWG	2/0	4/0	2 x 2/0	2 x 4/0			
Recommended brake resistor	mm²	95	120	2 x 70	2 x 120			
Recommended brake resistor	AWG	2/0	4/0	2 x 2/0	2 x 4/0			

Table 1-27 Braking resistor (minimum resistance values and peak power rating for the braking resistor at 40°C)

Model		Siz	e 2			Size 3		5	Size 4^	۸	Size	5^^	Siz	e 6
Wodel	8 T	11 T	16 T	20 T	22 T	27 T	33 T	40 T	50 T	60 T	75 T	100 T	120 T	150 T
Minimum braking resistor value $(\Omega)^{****}$		1	9			18		1	1	9	7	7	į	5
Resistor peak power rating (kW)		33	3.1			35.5		55	.3	67.6	86	6.9	12	1.7
Average power for 60s (kW)	9.6	13.1	19.3	22.5	22.5	27.8	33.0	45.0	53.0	67.5	82.5	86.9	90	110

Table 1-28 Cooling fan

Model			Siz	e 2			Size 3			Size 4		Siz	e 5	Siz	e 6
Woder		8 T	11 T	16 T	20 T	22 T	27 T	33 T	40 T	50 T	60 T	75 T	100 T	120 T	150 T
Air flow	m³/hour		65		70		150			200		25	0	25	0

1.2.4 Digidrive SK 575V size 3 to 6 units

Key:

◆ Refer to Table 1-13 and Table 1-14 on page 10 for typical overload limits

The values of typical input current are given to aid calculations for power flow and power loss (Normal Duty rating). The values of typical input current are stated for a balanced supply.

The values of maximum continuous input current are given to aid the selection of cables and fuses. These values are stated for the worse case condition with the unusual combination of a stiff supply with bad balance (Normal Duty rating). The value stated for the maximum continuous input current would only been seen in one of the input phases. The current in the other two phases would be significantly lower.

The values of maximum input current are stated with a 2% negative phase-sequence imbalance and rated at the maximum supply fault current given in the following tables.

Table 1-29 Size 3 ratings

Model				Size 3						
Model	3.5 TM	4.5 TM	5.5 TM	8 TM	11 TM	16 TM	22 TM			
AC supply voltage and frequency			3 phase 500	to 575Vac ±10	% 48 to 65Hz		•			
Input displacement factor (cos ∅)				>0.97						
-		Norn	nal Duty							
Nominal motor power at 575V (kW)	3.0	4.0	5.5	7.5	11	15	18.5			
Nominal motor power at 575V (hp)	3.0	5.0	7.5	10	15	20	25			
100% RMS output current (A)	5.4	6.1	8.4	11	16	22	27			
•		Heav	y Duty							
Nominal motor power at 575V (kW)	2.2	3.0	4.0	5.5	7.5	11	15			
Nominal motor power at 575V (hp)	2.0	3.0	5.0	7.5	10	15	20			
100% RMS output current (A)	4.1	5.4	6.1	9.5	12	18	22			
Peak current (A) ◆	6.1	8.1	9.1	14.2	18	27	33			
Typical full load input current (A) *	5.0	6.0	7.8	9.9	13.8	18.2	22.2			
Maximum continuous input current (A) **	6.7	8.2	11.1	14.4	18.1	22.2	26.0			
Typical inrush current (A)		1	8			•	·			
Maximum supply fault current (kA)	100									
Weight (kg)	15									
Weight (lb)				33.1						

^{*} Typical input current

^{**} Maximum continuous input current

^{****} Resistor tolerance ±10%

[^] Semi-conductor fuse in series with HRC fuse or circuit breaker

^{^^} The minimum resistance value specified is for a stand-alone drive only. If the drive is part of a common DC bus system a different value must be used. Contact the supplier of the drive for more information

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

Table 1-30 Size 4 to 6 ratings

Model		Siz	e 4		Siz	ze 5	Siz	ze 6	
Model	33 TH	40 TH	50 TH	60 TH	75 TH	100 TH	120 TH	150 TH	
AC supply voltage and frequency		•	3 phas	e 500 to 575\	/ac ±10% 48	to 65Hz	•	•	
Input displacement factor (cos ∅)				>0	.97				
_		N	ormal Duty						
Nominal motor power at 575V (kW)	22	30	37	45	55	75	90	110	
Nominal motor power at 575V (hp)	30	40	50	60	75	100	125	150	
100% RMS output current (A)	36	43	52	62	84	99	125	144	
-		ŀ	leavy Duty	•		•		•	
Nominal motor power at 575V (kW)	18.5	22	30	37	45	55	75	90	
Nominal motor power at 575V (hp)	25	30	40	50	60	75	100	125	
100% RMS output current (A)	27	36	43	52	63	85	100	125	
Peak current (A) ◆	40.5	54	64.5	78	93	126	128	160	
Typical full load input current (A) *	32.9	39	46.2	55.2	75.5	89.1	128	144	
Maximum continuous input current (A) **	35.1	41	47.9	56.9	82.6	94.8	138	156	
Typical inrush current (A)		3	5	•	7	70			
Maximum supply fault current (kA)	100								
Weight (kg)		3	80		Ę	55	7	'5	
Weight (lb)		66	3.1		12	1.3	16	5.3	

The power ratings above for model size 4 and larger are for the 690V drives when used on a 500V to 575V supply.

Table 1-31 Size 3 fuses

Model					Size 3			
		3.5 TM	4.5 TM	5.5 TM	8 TM	11 TM	16 TM	22 TM
Decemmended input	IEC gG	8	10	12	16	20	25	32
Recommended input supply fuse (A)	Class CC	10	10	15	15	20	25	
Supply luse (71)	Class J							30

Table 1-32 Size 3 cables

Model					Size 3			
Wodel		3.5 TM	4.5 TM	5.5 TM	8 TM	11 TM	16 TM	22 TM
Control cable	mm²		•		≥0.5	•	•	•
Control cable	AWG				20			
Decommended input cable	mm²	1.0	1.0	1.5	2.5	4.0	4.0	6.0
Recommended input cable	AWG	16	16	14	14	12	10	8
Decemmended meter cable	mm²	1.0	1.0	1.0	1.5	2.5	4.0	6.0
Recommended motor cable	AWG	18	16	14	14	14	10	8
Recommended brake	mm²	1.0	1.0	1.0	1.5	2.5	4.0	6.0
resistor	AWG	18	16	14	14	14	10	8

Table 1-33 Braking resistor (minimum resistance values and peak power rating for the braking resistor at 40°C)

Model				Size 3			
Wiodel	3.5 TM	4.5 TM	5.5 TM	8 TM	11 TM	16 TM	22 TM
Minimum braking resistor value $(\Omega)^{****}$				18			
Resistor peak power rating (kW)				50.7			
Average power for 60s (kW)	4.4	6.0	8.0	9.6	13.1	19.3	22.5

Table 1-34 Cooling fan

Mo	odel				Size 3			
IVIO	odei	3.5 TM	4.5 TM	5.5 TM	8 TM	11 TM	16 TM	22 TM
Air flow	m ³ /hour				250			

NOTE

Refer to section 1.2.5 for the fuse and cable information for the 575V units (same as 690V units).

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Options
data	and losses	levels	design	installation	LIVIC	reactors	lengths	data	specification	types	Options

1.2.5 Digidrive SK 690V size 4 to 6 units

Key:

- ◆ Refer to Table 1-13 and Table 1-14 on page 10 for typical overload limits
- * Typical input current

The values of typical input current are given to aid calculations for power flow and power loss (Normal Duty rating).

The values of typical input current are stated for a balanced supply.

** Maximum continuous input current

The values of maximum continuous input current are given to aid the selection of cables and fuses. These values are stated for the worse case condition with the unusual combination of a stiff supply with bad balance (Normal Duty rating). The value stated for the maximum continuous input current would only been seen in one of the input phases. The current in the other two phases would be significantly lower.

The values of maximum input current are stated with a 2% negative phase-sequence imbalance and rated at the maximum supply fault current given in the following tables.

- **** Resistor tolerance ±10%
- ^ Semi-conductor fuse in series with HRC fuse or circuit breaker
- ^^ The minimum resistance value specified is for a stand-alone drive only. If the drive is part of a common DC bus system a different value must be used. Contact the supplier of the drive for more information

Table 1-35 Size 4 ratings

Model			Siz	ze 4							
Model	22 TH	27 TH	33 TH	40 TH	50 TH	60 TH					
AC supply voltage and frequency		3 p	hase 500 to 690\	/ac ±10% 48 to 65	Hz	•					
Input displacement factor (cos ∅)			>0	.97							
		Normal D	uty								
Nominal motor power at 690V (kW)	18.5	22	30	37	45	55					
Nominal motor power at 690V (hp)	25	30	40	50	60	75					
100% RMS output current (A)	22	27	36	43	52	62					
		Heavy Du	ity	•	•	l.					
Nominal motor power at 690V(kW)	15	18.5	22	30	37	45					
Nominal motor power at 690V (hp)	20	25	30	40	50	60					
100% RMS output current (A)	19	22	27	36	43	52					
Peak current (A) ◆	27	33	40.5	54	64.5	78					
Typical full load input current (A) *	23	26.1	32.9	39	46.2	55.2					
Maximum continuous input current (A) **	26.5	28.8	35.1	41	47.9	56.9					
Typical inrush current (A)		•	3	35	•						
Maximum supply fault current (kA)		100									
Weight (kg)	30										
Weight (lb)			66	3.1							

Table 1-36 Size 5 and 6 ratings

Model	Si	ze 5	Siz	e 6		
Wiodei	75 TH	100 TH	120 TH	150 TH		
AC supply voltage and frequency		3 phase 500 to 690V	ac ±10% 48 to 65Hz			
Input displacement factor (cos ∅)		>0.	97			
•		Normal Duty				
Nominal motor power at 690V(kW)	75	90	110	132		
Nominal motor power at 690V (hp)	100	125	150	175		
100% RMS output current (A)	84	99	125	144		
•		Heavy Duty				
Nominal motor power at 690V (kW)	55	75	90	110		
Nominal motor power at 690V (hp)	75	100	125	150		
100% RMS output current (A)	63	85	100	125		
Peak current (A) ◆	93	126	128	160		
Typical full load input current (A) *	75.5	89.1	128	144		
Maximum continuous input current (A) **	82.6	94.8	138	156		
Typical inrush current (A)		70				
Maximum supply fault current (kA)	t (kA) 100					
Weight (kg)	;	55	7	75		
Weight (lb)	12	21.3	16	5.3		

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

Table 1-37 Size 4 fuses

			Size 4											
Model		22 TH	27 TH	33 TH	40 TH	50 TH	60 TH	22 TH	27 TH	33 TH	40 TH	50 TH	60 TH	
		Option 1 Option					n 2^							
	IEC gR	63				80								
	Ferraz HSJ	60												
Recommended input supply fuse (A) IEC gG UL class								32	40	50	50	63	63	
IEC class aR								125	125	125	125	125	125	

Table 1-38 Size 5 and 6 fuses

			Siz	e 5		Size 6					
Model	Model		100 TH	75 TH	100 TH	120 TH 150 TH		120 TH	150 TH		
		Option 1		Optio	on 2^	Option 1		Option 2 [^]			
	IEC gR	125	125			21	nn				
Recommended input	Ferraz HSJ	100	100			200					
supply fuse (A)	IEC gG UL class J			90	125			20	00		
	IEC class aR			160	160						

Table 1-39 Size 4 to 6 cables

Model				Siz	e 4			Siz	e 5	Siz	e 6	
Model		22 TH	27 TH	33 TH	40 TH	50 TH	60 TH	75 TH	100 TH	120 TH	150 TH	
Control cable mm²				≥0).5			≥0.5				
Control cable	AWG			2	20							
Recommended input cable	mm²	4	6	10	16	16	25	35	50	2 x 50	2 x 50	
recommended input cable	AWG	10	8	8	6	6	4	2	1	2 x 1	2 x 1	
Recommended motor cable	mm²	4	6	10	16	16	25	35	50	2 x 50	2 x 50	
Neconinended motor cable	AWG	10	8	8	6	6	4	2	1	2 x 1	2 x 1	
Recommended brake resistor	mm²	4	6	10	16	16	25	35	50	2 x 50	2 x 50	
Necommended blake resistor	AWG	10	8	8	6	6	4	2	1	2 x 1	2 x 1	

Table 1-40 Braking resistor (minimum resistance values and peak power rating for the braking resistor at 40°C)

Model			Size	4^^			Size	5^^	Size 6	
Wiodel	22 TH	27 TH	33 TH	40 TH	50 TH	60 TH	75 TH	100 TH	120 TH	150 TH
Minimum braking resistor value $(\Omega)^{****}$		13				1	0	1	0	
Resistor peak power rating (kW)		95.0					12	5.4	12	5.4
Average power for 60s (kW)	19.3	22.5	27.8	33.0	45.0	55.5	67.5	82.5	112.5	125.4

Table 1-41 Cooling fan

Model				Siz	ze 4			Siz	e 5	Size 6	
		22 TH	27 TH	33 TH	40 TH	50 TH	60 TH	75 TH	100 TH	120 TH	150 TH
Air flow	m ³ /hour		200					25	50	25	50

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply types	Options
data	and losses	levels	design	installation	LIVIC	reactors	lengths	data	specification	Supply types	Options

2 Derating curves and losses

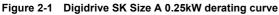
The derating curves are based on the results of heatruns that are carried out to measure temperatures of various components and at various key points within the drive at different switching frequencies, different loads and different ambient temperatures. The key components/points are:

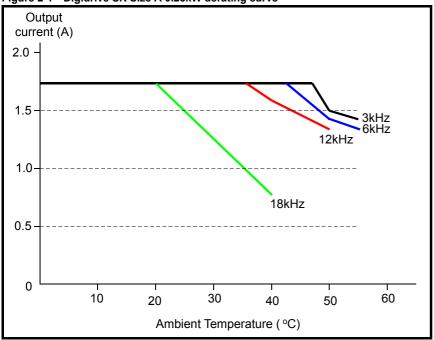
- Heatsink
- · Bridge rectifier
- IGBTs
- · DC bus capacitors
- · Various electrolytic capacitors
- Various resistors
- · Various semiconductor components

It is not always the heatsink temperature that is the limiting factor for the de-rating curves.

At 3 and 6kHz, the limiting factor tends to be the capacitor temperatures. Operating outside the derating curves will cause some of the capacitors within the drive to run outside of their maximum operating temperature and this could lead to the drives design lifetime being reduced.

At 12 and 18kHz (18kHz where applicable) the limiting factor tends to be the heatsink temperatures. Operating outside the de-rating curves will cause the heatsink temperature to increase and may cause the drive to trip on O.ht2.


If the auto-switching frequency change is enabled (Pr **5.35** = 0 [by default]), the drive will automatically decrease the switching frequency when the heatsink temperature rises above pre-determined levels to reduce the heatsink temperature. When the drive switches down the switching frequency, the drives display will flash 'hot'.


NOTE

It is important that these de-rating curves are observed.

2.1 Size A


2.1.1 Derating curves

NOTE

The derating curves and losses for the 110V size A and B are the same as the equivalent 200V drive.

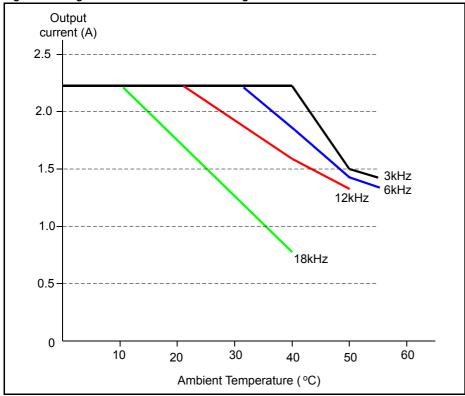
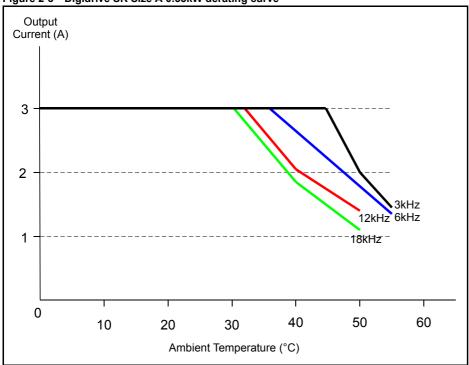
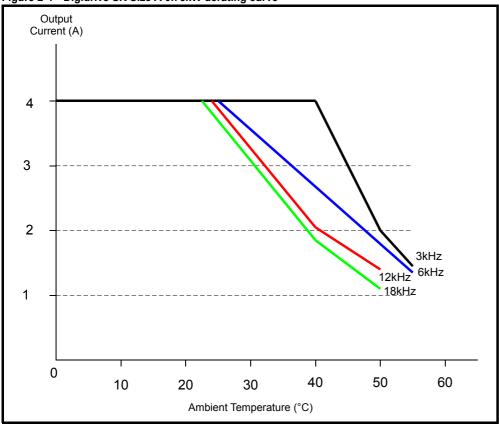




Figure 2-3 Digidrive SK Size A 0.55kW derating curve

ſ	Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply types	Ontions
	data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	Supply types	Options

Figure 2-4 Digidrive SK Size A 0.75kW derating curve

2.1.2 Drive losses

The following tables indicate the total drive losses at the de-rating curve points.

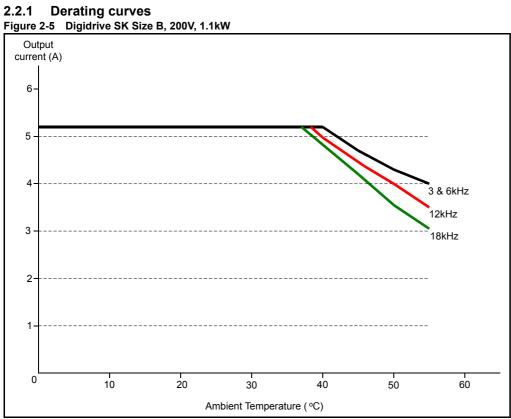
Table 2-1 Digidrive SK size A 0.25kW losses

Ambient Temperature (°C)	Loss (W)								
Ambient Temperature (C)	3kHz	6kHz	12kHz	18kHz					
30	30	32	36	35					
40	30	32	38	30					
50	29	31	34						
55	29	30							

Table 2-2 Digidrive SK size A 0.37kW losses

Ambient Temperature (°C)		Loss (W)							
Ambient Temperature (0)	3kHz	6kHz	12kHz	18kHz					
30	34	36	38	35					
40	34	33	38	30					
50	29	31	34						
55	29	30							

Table 2-3 Digidrive SK size A 0.55kW losses


Ambient Temperature (°C)		Loss	s (W)	
Ambient remperature (5)	3kHz	6kHz	12kHz	18kHz
30	42	46	53	61
40	42	43	44	47
50	35	36	37	38
55	31	33		

Technical data	Derating curves and losses	Drive voltage levels	DC bus design	Mechanical installation	EMC	AC line reactors	Motor cable lengths	General data	I/O specification	Supply types	Options
----------------	-------------------------------	----------------------	------------------	-------------------------	-----	------------------	---------------------	-----------------	----------------------	--------------	---------

Table 2-4 Digidrive SK size A 0.75kW losses

Ambient Temperature (°C)	Loss (W)					
Ambient Temperature (0)	3kHz	6kHz	12kHz	18kHz		
30	48	50	59	62		
40	48	43	44	47		
50	35	36	37	38		
55	31	33				

2.2 Size B

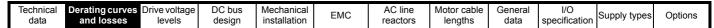
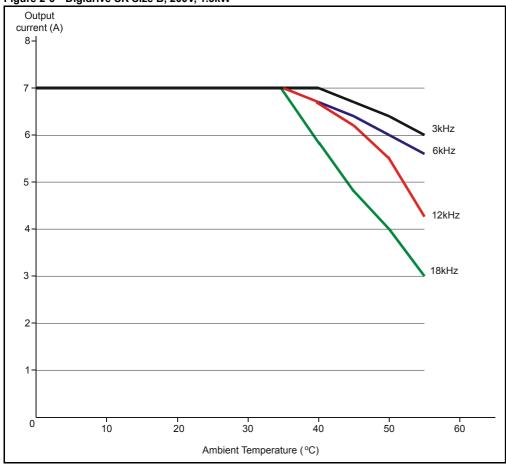
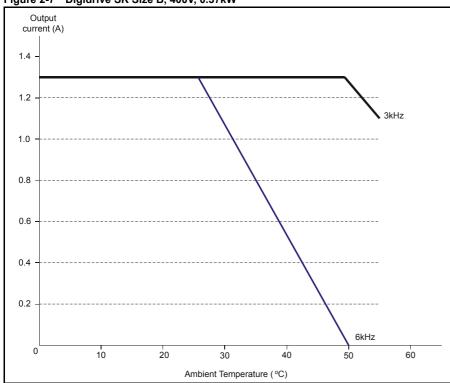




Figure 2-6 Digidrive SK Size B, 200V, 1.5kW

With the 0.37, 0.55 & 0.75kW drives, no 12kHz derating information is shown on the graphs. This is because the losses at 12kHz is too great to run the drive continuously. Depending on the duty cycle etc. it is still possible to run the drive at 12kHz but if the heatsink gets too hot, the drive will automatically switch down the switching frequency to 6kHz. When the drive does this, the display will flash 'hot' to indicate that the drive has automatically switched down the switching frequency.

Figure 2-7 Digidrive SK Size B, 400V, 0.37kW

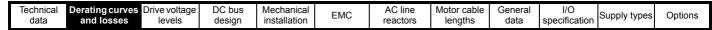


Figure 2-8 Digidrive SK Size B, 400V, 0.55kW

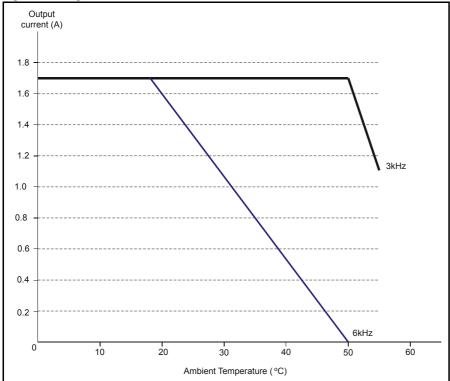
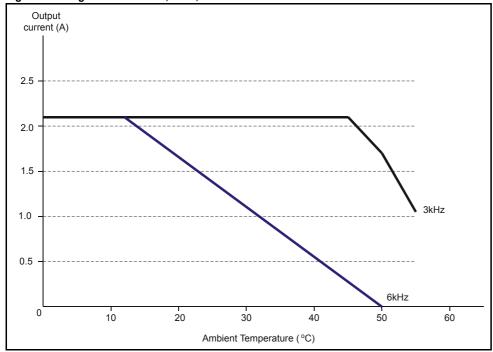



Figure 2-9 Digidrive SK Size B, 400V, 0.75kW

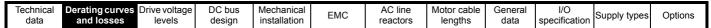


Figure 2-10 Digidrive SK Size B, 400V, 1.1kW

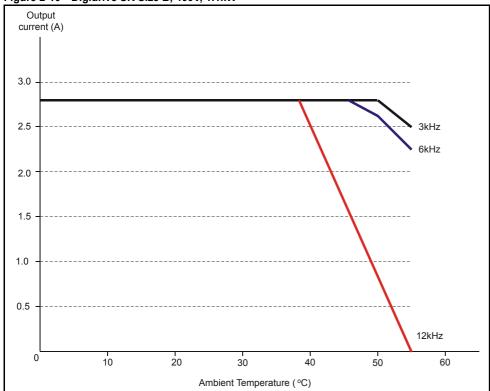
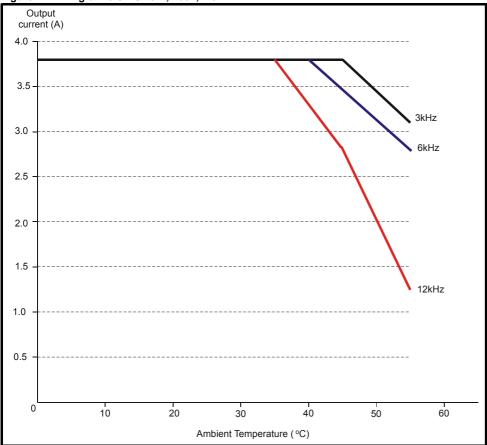



Figure 2-11 Digidrive SK Size B, 400V, 1.5kW

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply types	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	Supply types	Options

2.2.2 Drive losses

The following tables indicate the total drive losses at the de-rating curve points.

Table 2-5 Digidrive SK Size B, 200V, 1.1kW

Ambient Temperature (°C)		Loss (W)					
Ambient remperature (C)	3kHz	6kHz	12kHz	18kHz			
30	58	63	73	84			
40	58	63	70	78			
50	51	55	60	62			
55	48	51	54	57			

Table 2-6 Digidrive SK Size B, 200V, 1.5kW

Ambient Temperature (°C)	Loss (W)					
Ambient Temperature (C)	3kHz	6kHz	12kHz	18kHz		
30	72	79	85	92		
40	72	76	82	80		
50	66	69	71	59		
55	63	65	57	50		

Table 2-7 Digidrive SK Size B, 400V, 0.37kW

Ambient Temperature (°C)		Loss (W)	
Ambient remperature (0)	3kHz	6kHz	12kHz
30	24	27	
40	24	21	
50	24		
55	22		

Table 2-8 Digidrive SK Size B, 400V, 0.55kW

Ambient Temperature (°C)		Loss (W)					
Ambient remperature (0)	3kHz	6kHz	12kHz				
30	27	26					
40	27	21					
50	27						
55	22						

Table 2-9 Digidrive SK Size B, 400V, 0.75kW

Ambient Temperature (°C)	Loss (W)					
Ambient remperature (0)	3kHz	6kHz	12kHz			
30	31	27				
40	31	21				
50	26					
55	22					

Table 2-10 Digidrive SK Size B, 400V, 1.1kW

Ambient Temperature (°C)	Loss (W)					
Ambient Temperature (0)	3kHz	6kHz	12kHz			
30	43	51	68			
40	43	51	62			
50	43	49	35			
55	40	44				

Table 2-11 Digidrive SK Size B, 400V, 1.5kW

Ambient Temperature (°C)		Loss (W)	
Ambient Temperature (0)	3kHz	6kHz	12kHz
30	53	65	87
40	53	65	76
50	49	55	55
55	46	51	45

NOTE

The drive losses for the 110V drives will be the same as the equivalent 200V drives.

25

ſ	Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply types	Ontions
	data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	Supply types	Options

2.3 Size C

2.3.1 Derating curves
Figure 2-12 Digidrive SK Size C, 200V, 2.2kW

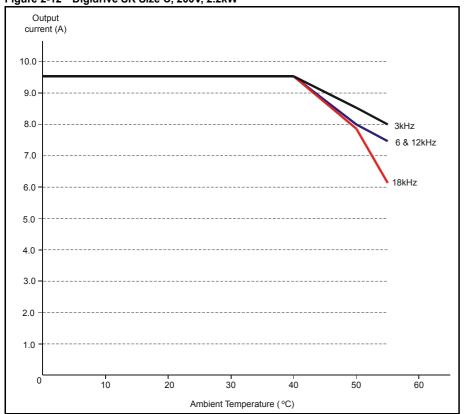


Figure 2-13 Digidrive SK Size C, 400V, 2.2kW

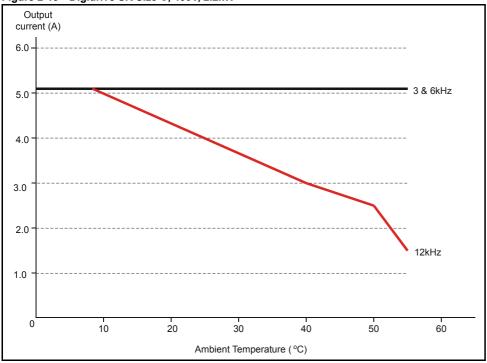


Figure 2-14 Digidrive SK Size C, 400V, 3.0kW

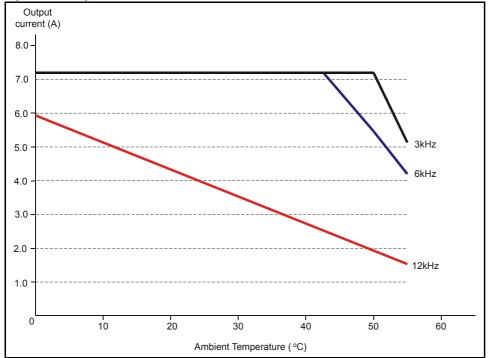
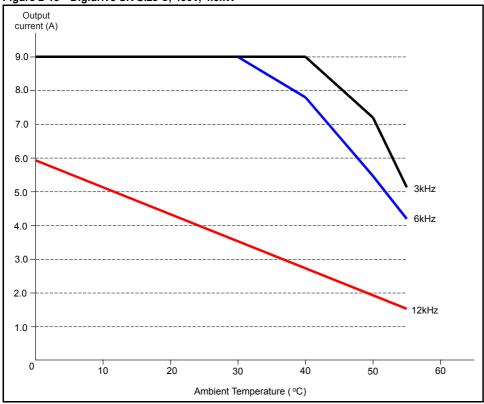



Figure 2-15 Digidrive SK Size C, 400V, 4.0kW

ſ	Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply types	Ontions
	data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	Supply types	Options

2.3.2 Drive losses

Table 2-12 Digidrive SK Size C, 200V, 2.2kW

Ambient Temperature (°C)	Loss (W)							
Ambient Temperature (C)	3kHz	6kHz	12kHz	18kHz				
30	93	107	133	158				
40	93	107	133	158				
50	84	93	115	133				
55	80	88	109	111				

Table 2-13 Digidrive SK Size C, 400V, 2.2kW

Ambient Temperature (°C)	Loss (W)					
Ambient Temperature (C)	3kHz	6kHz	12kHz			
30	78	108	118			
40	78	108	101			
50	78	108	88			
55	78	108	60			

Table 2-14 Digidrive SK Size C, 400V, 3.0kW

Ambient Temperature (°C)	Loss (W)					
Ambient Temperature (C)	3kHz	6kHz	12kHz			
30	91	117	93			
40	91	117	78			
50	91	94	62			
55	70	77	47			

Table 2-15 Digidrive SK Size C, 400V, 4.0kW

Ambient Temperature (°C)	Loss (W)					
Ambient Temperature (C)	3kHz	6kHz	12kHz			
30	116	149	99			
40	116	132	84			
50	96	100	69			
55	75	83	54			

2.4 Size D

2.4.1 Derating curves

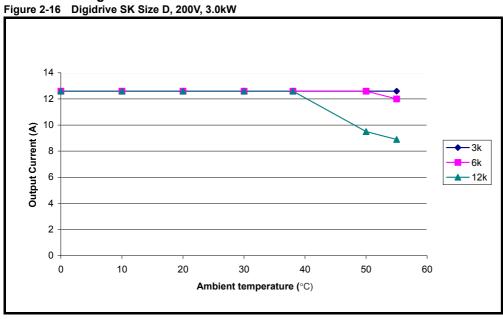
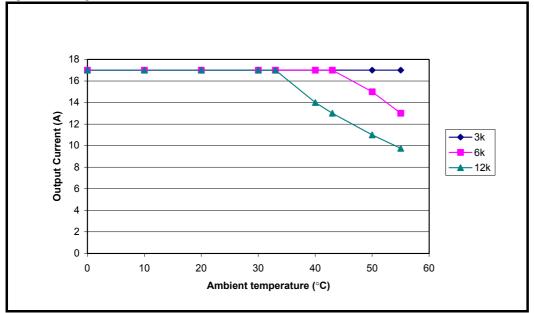
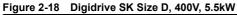
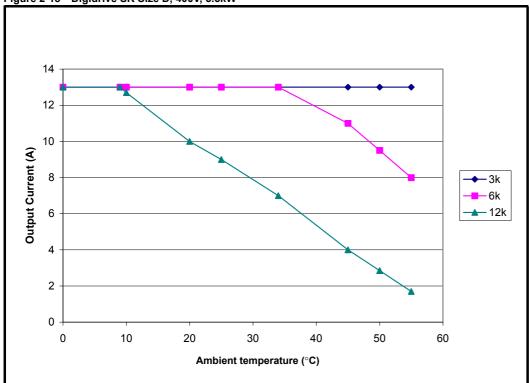
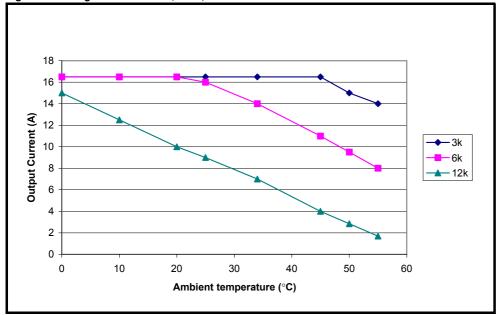





Figure 2-17 Digidrive SK Size D, 200V, 4.0kW



Technical	Derating curves	Drive voltage l	DC bus	Mechanical	EMO	AC line	Motor cable	General	I/O		
					EMC					Supply types	Options
data	and losses	levels	design	installation		reactors	lengths	data	specification	cappi, typec	0 0 1.00

Figure 2-19 Digidrive SK Size D, 400V, 7.5kW

2.4.2 Drive losses

Table 2-16 Digidrive SK Size D, 200V, 3.0kW

Ambient	Loss (W)							
Temperature (°C)	3kHz	6kHz	12kHz					
30	130	151	193					
40	130	151	181					
50	130	151	150					
55	130	142	139					

Table 2-17 Digidrive SK Size D, 200V, 4.0kW

	,	-,						
Ambient	Loss (W)							
Temperature (°C)	3kHz	6kHz	12kHz					
30	179	208	264					
40	179	208	209					
50	179	185	170					
55	179	154	151					

Table 2-18 Digidrive SK Size D, 400V, 5.5kW

	-	1 040							
Ambient		Loss (W)							
Temperature (°C)	3kHz	6kHz	12kHz						
30	174	226	216						
40	174	210	165						
50	174	175	120						
55	174	151	90						

Table 2-19 Digidrive SK Size D, 400V, 7.5kW

Ambient	Loss (W)							
Temperature (°C)	3kHz	6kHz	12kHz					
30	220	257	226					
40	220	217	165					
50	198	175	119					
55	187	157	85					

NOTE

These loss figures show the amount of losses at the maximum available output current for each switching frequency and temperature.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply types	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	Supply types	Options

2.5 Size 2

2.5.1 Power and current ratings (derating for switching frequency and temperature)

Table 2-20 Maximum permissible continuous output current @ 40°C (104°F) ambient for wall mounted drives

				Normal I	Duty		Heavy Duty					
Model		Nominal rating		current (A	ximum continuous output rent (A) @ each switching frequency		' Nominal		switching			
LS	СТ	kW	hp	3kHz	6kHz	12kHz	kW	hp	3kHz	6kHz	12kHz	
SK 4.5 TL	SK2201	4.0	5.0	15.5			3.0	3.0	12.6			
SK 5.5 TL	SK2202	5.5	7.5		22.0		4.0	5.0	17.0			
SK 8 TL	SK2203	7.5	10	28	.0	24.8	5.5	7.5	25.0	24.2	19.6	
SK 8 T	SK2401	7.5	10	15	.3	12.7	5.5	10	13	3.0	9.6	
SK 11 T	SK2402	11	15	21.0	19.5	12.7	7.5	10	16.5	14.9	9.6	
SK 16 T	SK2403	15	20	29.0 23.2		15.0	11	20	25.0	19.9	12.8	
SK 20 T	SK2404*	15	20	29.0	26.6	16.5	15	20	29.0	20.5	12.1	

Table 2-21 Maximum permissible continuous output current @ 40°C (104°F) ambient with IP54 insert and standard or IP54 fan installed

				Norm	al Duty		Heavy Duty					
Model		Nom rati		Maximum continuous output current (A) @ each switching frequency			Nom rati		Maximum continuous outpu current (A) @ each switching frequency		ach .	
LS	СТ	kW	hp	3kHz	6kHz	12kHz	kW	hp	3kHz	6kHz	12kHz	
SK 4.5 TL	SK2201	4.0	5.0		15.5			3.0	12.6			
SK 5.5 TL	SK2202	5.5	7.5	22	2.0	18.0	4.0	5.0	17.0			
SK 8 TL	SK2203	7.5	10	24.5	22.0	17.9	5.5	7.5	24.2	21.8	17.7	
SK 8 T	SK2401	7.5	10	15	5.3	10.1	5.5	10	1	3.0	9.4	
SK 11 T	SK2402	11	15	20.1	15.6	10.1	7.5	10	16.5	14.9	9.3	
SK 16 T	SK2403	15	20	21.7 16.4		10.2	11	20	21.6	16.4	10.2	
SK 20 T	SK2404*	15	20	20.1	14.0	7.3	15	20	20.1	14.0	7.3	

^{*} See section *** SK20T Power and current ratings on page 12.

Table 2-22 Maximum permissible continuous output current @ 50°C (122°F) ambient for wall mounted drives

				Norma	l Duty				Heavy [Outy	
Мос	del	Nom rati			n continuo A) @ each s frequency	•	Nom rati		curr	n continuou ent (A) @ e hing frequ	ach
LS	СТ	kW	hp	3kHz	6kHz	12kHz	kW	hp	3kHz	6kHz	12kHz
SK 4.5 TL	SK2201	4.0	5.0	15	.5	13.5	3.0	3.0	12.6		
SK 5.5 TL	SK2202	5.5	7.5	19.7	17.3	13.5	4.0	5.0	17.0		13.4
SK 8 TL	SK2203	7.5	10	19.5	17.2	13.4	5.5	7.5	19.2	17.0	13.3
SK 8 T	SK2401	7.5	10	15.3	11.8	7.3	5.5	10	13.0	11.7	7.3
SK 11 T	SK2402	11	15	15.7	11.8	7.3	7.5	10	15.5	11.7	7.3
SK 16 T	SK2403	15	20	16.8 12.2		7.1	11	20	16.7	12.2	7.1
SK 20 T	SK2404*	15	20	22.3 15.8		8.6	15	20	22.3	14.0	7.3

^{*} See section *** SK20T Power and current ratings on page 12.

NOTE

Technical	Derating curves Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply types	Options
data	and losses levels	design	installation	LIVIO	reactors	lengths	data	specification	Supply types	Ориона

2.5.2 Drive losses

Table 2-23 Losses @ 40°C (104°F) ambient for wall mounted drives

		Driv	e losse	s (W) taking	into consi	deration ar	ny curre	ent dera	ting for the	given co	nditions
Mo	del			Normal	Duty				Heavy D	uty	
	uo:	_	ninal ing	3kHz	6kHz	12kHz		ninal ing	3kHz	6kHz	12kHz
LS	СТ	kW hp 4.0 5.0				kW	hp				
SK 4.5 TL	SK2201	4.0	5.0	155	173	210	3.0	3.0	133	150	182
SK 5.5 TL	SK2202	5.5	7.5	210	234	282	4.0	5.0	170	190	229
SK 8 TL	SK2203	7.5	10	272	302	320	5.5	7.5	245	263	259
SK 8 T	SK2401	7.5	10	186	234	283	5.5	10	164	206	229
SK 11 T	SK2402	11	15	248	291	283	7.5	10	201	230	229
SK 16 T	SK2403	15	20	313	320	315	11	20	272	279	279
SK 20 T	SK2404	15	20	311	37	' 6	15	20	311	301	302

NOTE

Table 2-24 Losses @ 40°C (104°F) ambient with IP54 insert and standard or IP54 fan installed

		Driv	e losse	s (W) taking	into consi	deration ar	ny curre	ent dera	ting for the	given co	nditions
Мо	del			Normal	Duty				Heavy D	uty	
IIIO	u01		ninal ing	3kHz	6kHz	12kHz		ninal ting	3kHz	6kHz	12kHz
LS	СТ	kW hp					kW	hp			
SK 4.5 TL	SK2201	4.0	5.0	155	173	210	3.0	3.0	133	150	182
SK 5.5 TL	SK2202	5.5	7.5	210	234	237	4.0	5.0	170	190	229
SK 8 TL	SK2203	7.5	10		237		5.5	7.5		237	
SK 8 T	SK2401	7.5	10	186	234	237	5.5	10	164	206	226
SK 11 T	SK2402	11	15		237		7.5	10	201	230	224
SK 16 T	SK2403	15	20		237		11	20		237	•
SK 20 T	SK2404	15	20	225		15	20	225			

Table 2-25 Losses @ 50°C (122°F) ambient for wall mounted drives

		Driv	e losse	s (W) taking	j into consi	deration ar	ny curre	ent dera	ting for the	given co	nditions
Mo	del			Normal	Duty				Heavy D	uty	
1110	doi		ninal ing	3kHz	6kHz	12kHz		ninal ing	3kHz	6kHz	12kHz
LS	СТ	kW	hp				kW	hp			
SK 4.5 TL	SK2201	4.0	5.0	155 173 190			3.0	3.0	133	150	182
SK 5.5 TL	SK2202	5.5	7.5		190	•	4.0	5.0	170	190	•
SK 8 TL	SK2203	7.5	10		190		5.5	7.5	190		
SK 8 T	SK2401	7.5	10	186	19	90	5.5	10	164	1	90
SK 11 T	SK2402	11	15	190			7.5	10		190	
SK 16 T	SK2403	15	20	190			11	20	190		
SK 20 T	SK2404	15	20	245		15	20		245		

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply types	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	Supply types	Options

2.6 Size 3

2.6.1 Power and current ratings (derating for switching frequency and temperature)

Table 2-26 Maximum permissible continuous output current @ 40°C (104°F) ambient for wall mounted drives

				Normal I	Duty				Heavy [Outy	
Мос	iel		ninal ing	current (A		us output switching		ninal ing		n continuo A) @ each : frequency	switching
LS	СТ	kW	hp	3kHz	6kHz	12kHz	kW	hp	3kHz	6kHz	12kHz
SK 11 TL	SK3201	11	15		42.0		7.5	10		31.0	
SK 16 TL	SK3202	15	20	54	.0	48.5	11	15	42.0		41.3
SK 22 T	SK3401	18.5	25	35	.0	26.3	15	25	32.0		22.0
SK 27 T	SK3402	22	30	43.0		28.6	18.5	30	40.0	38.3	24.5
SK 33 T	SK3403	30	40	56.0	56.0 44.6		22	30	46.0	38.3	24.5
SK 3.5 TM	SK3501	3.0	3.0	5.	4		2.2	2.0	4.1		
SK 4.5 TM	SK3502	4.0	5.0	6.	1		3.0	3.0	5	.4	
SK 5.5 TM	SK3503	5.5	7.5	8.	4		4.0	5.0	6	.1	
SK 8 TM	SK3504	7.5	10	11.0			5.5	7.5	9	.5	
SK 11 TM	SK3505	11	15	16	.0		7.5	10	12	2.0	
SK 16 TM	SK3506	15	20	22.0	18.2		11	15	18	3.0	
SK 22 TM	SK3507	18.5	25	27.0	21.6		15	20	22.0	18.4	

Table 2-27 Maximum permissible continuous output current @ 50°C (122°F) ambient for wall mounted drives

				Normal [Outy				Heavy [Outy	
Мос	lel		ninal ing	current (A		us output switching		ninal ing		n continuo A) @ each s frequency	switching
LS	СТ	kW	hp	3kHz	6kHz	12kHz	kW	hp	3kHz	6kHz	12kHz
SK 11 TL	SK3201	11	15	42	.0	38.2	7.5	10	31.0		
SK 16 TL	SK3202	15	20	54.0 52.8		38.2	11	15	42.0		37.2
SK 22 T	SK3401	18.5	25	35.0 33.5		21.5	15	25	32.0	30.7	19.7
SK 27 T	SK3402	22	30	43.0	43.0 34.2		18.5	30	40.0	34.1	20.7
SK 33 T	SK3403	30	40	46.0	34.2	21.0	22	30	46.0	33.6	20.8
SK 3.5 TM	SK3501	3.0	3.0	5.4	4		2.2	2.0	4.1		
SK 4.5 TM	SK3502	4.0	5.0	6.	1		3.0	3.0	5	.4	
SK 5.5 TM	SK3503	5.5	7.5	8.4	4		4.0	5.0	6	.1	
SK 8 TM	SK3504	7.5	10	11.0			5.5	7.5	9	.5	
SK 11 TM	SK3505	11	15	16	.0		7.5	10	12	2.0	
SK 16 TM	SK3506	15	20	22.0	17.8		11	15	18.0	16.8	
SK 22 TM	SK3507	18.5	25	24.6	17.8		15	20	22.0	16.7	

NOTE

Technical	Derating curves	Drive voltage	DC bus	Mechanical		AC line	Motor cable	General	I/O	Cupply types	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	Supply types	Options

2.6.2 Drive losses

Table 2-28 Losses @ 40°C (104°F) ambient for wall mounted drives

		Driv	e losse	s (W) taking	into consi	deration a	ny curre	ent dera	ting for the	given co	nditions
Mod	del			Normal	Duty				Heavy D	uty	
	uei	_	ninal ing	3kHz	6kHz	12kHz		ninal ing	3kHz	6kHz	12kHz
LS	СТ	kW	hp				kW	hp			
SK 11 TL	SK3201	11	15	331	380	477	7.5	10	260	297	370
SK 16 TL	SK3202	15	20	431	492	551	11	15	349	398	486
SK 22 T	SK3401	18.5	25	364	449	477	15	25	337	415	408
SK 27 T	SK3402	22	30	437	540	514	18.5	30	411	485	452
SK 33 T	SK3403	30	40	567	552	510	22	30	474	485	452
SK 3.5 TM	SK3501	3.0	3.0	127	168		2.2	2.0	112	148	
SK 4.5 TM	SK3502	4.0	5.0	135	180		3.0	3.0	127	168	
SK 5.5 TM	SK3503	5.5	7.5	163	218		4.0	5.0	135	180	
SK 8 TM	SK3504	7.5	10	197	263		5.5	7.5	178	237	
SK 11 TM	SK3505	11	15	267	354		7.5	10	212	281	
SK 16 TM	SK3506	15	20	362	475		11	15	300	396	
SK 22 TM	SK3507	18.5	25	448	477		15	20	365	406	

NOTE

For the definition of ambient temperature, see section 5.3.5 Enclosure design and drive ambient temperature on page 77.

Table 2-29 Losses @ 50°C (122°F) ambient for wall mounted drives

		Driv	e losse	s (W) taking	into consi	deration ar	ny curre	ent dera	ting for the	given co	nditions
Mod	dal			Normal	Duty				Heavy D	uty	
Mod	uei	_	ninal ing	3kHz	6kHz	12kHz	_	ninal ing	3kHz	6kHz	12kHz
LS	СТ	kW	hp				kW	hp			
SK 11 TL	SK3201	11	15	331	380	436	7.5	10	260	297	370
SK 16 TL	SK3202	15	20	431	480	439	11	15	349	398	439
SK 22 T	SK3401	18.5	25	364	430	399	15	25	337	399	373
SK 27 T	SK3402	22	30	437	435	399	18.5	30	411	435	396
SK 33 T	SK3403	30	40	474	429	397	22	30	474	429	397
SK 3.5 TM	SK3501	3.0	3.0	127	168		2.2	2.0	112	148	
SK 4.5 TM	SK3502	4.0	5.0	135	180		3.0	3.0	127	168	
SK 5.5 TM	SK3503	5.5	7.5	163	218		4.0	5.0	135	180	
SK 8 TM	SK3504	7.5	10	197	263		5.5	7.5	178	237	
SK 11 TM	SK3505	11	15	267	354		7.5	10	212	281	
SK 16 TM	SK3506	15	20	362	390		11	15	300	372	
SK 22 TM	SK3507	18.5	25	405	390		15	20	365	369	

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply types	Options
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	Supply types	Options

2.7 Size 4

2.7.1 Power and current ratings (derating for switching frequency and temperature)

Table 2-30 Maximum permissible continuous output current @ 40°C (104°F) ambient for wall mounted drives

Model				Norma Duty			Heavy Duty					
			ninal ing	Maximum continuous output current (A) @ each switching frequency				ninal ing	Maximum continuous output current (A) @ each switching frequency			
LS	СТ	kW	hp	3kHz 6kHz		12kHz	kW	hp	3kHz	6kHz	12kHz	
SK 22 TL	SK4201	18.5	25	68.0			15	20	56.0			
SK 27 TL	SK4202	22	30	80.0			18.5	25	68.0			
SK 33 TL	SK4203	30	40	104			22	30	80.0			
SK 40 T	SK4401	37	50	68	.0		30	50	60.0	51.9		
SK 50 T	SK4402	45	60	83.0	74.0		37	60	74.0	51.9		
SK 60 T	SK4403	55	75	104	95.1		45	75	96.0	66.6		
SK 22 TH	SK4601	18.5	25	22	.0		15	20	19.0			
SK 27 TH	SK4602	22	30	27.0			18.5	25	22.0			
SK 33 TH	SK4603	30	40	36.0			22	30	27.0			
SK 40 TH	SK4604	37	50	43.0 41.3			30	40	36.0			
SK 50 TH	SK4605	45	60	52.0 41.2			37	50	43.0	41.3		
SK 60 TH	SK4606	55	75	62.0	48.4		45	60	52.0	44.7		

Table 2-31 Maximum permissible continuous output current @ 50°C (122°F) ambient for wall mounted drives

		Normal Duty						Heavy Duty						
Model		Nominal rating		Maximum continuous output current (A) @ each switching frequency			Nominal rating		Maximum continuous ou current (A) @ each switch frequency					
LS	СТ	kW	hp	3kHz	6kHz	12kHz	kW	hp	3kHz 6kHz		12kHz			
SK 22 TL	SK4201	18.5	25	68.0			15	20	56.0					
SK 27 TL	SK4202	22	30	80.0			18.5	25	68.0					
SK 33 TL	SK4203	30	40	87.4			22	30	80.0					
SK 40 T	SK4401	37	50	68.0	66.8		30	50	60.0	46.7				
SK 50 T	SK4402	45	60	83.0	66.8		37	60	68.2	46.7				
SK 60 T	SK4403	55	75	86.5	71.3		45	75	86.5	60.1				
SK 22 TH	SK4601	18.5	25	22	.0		15	20	19.0					
SK 27 TH	SK4602	22	30	27.0			18.5	25	22.0					
SK 33 TH	SK4603	30	40	36.0 30.7			22	30	27	7.0				
SK 40 TH	SK4604	37	50	43.0	30.7		30	40	36.0	30.7				
SK 50 TH	SK4605	45	60	45.6	30.7		37	50	43.0	30.7				
SK 60 TH	SK4606	55	75	51.9	34.7		45	60	51.9	34.7				

NOTE

Technical	Derating curves Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply types	Options
data	and losses levels	design	installation	LIVIO	reactors	lengths	data	specification	Supply types	Options

2.7.2 Drive losses

Table 2-32 Losses @ 40°C (104°F) ambient for wall mounted drives

		Drive losses (W) taking into consideration any current derating for the given conditions													
Mo	Model		Normal Duty						Heavy Duty						
		Nominal rating		3kHz	6kHz	12kHz	Nominal rating		3kHz	6kHz	12kHz				
LS	СТ	kW	hp				kW	hp							
SK 22 TL	SK4201	18.5	25	517	589		15	20	428	488					
SK 27 TL	SK4202	22	30	611	694		18.5	25	517	589					
SK 33 TL	SK4203	30	40	810	916		22	30	611	694					
SK 40 T	SK4401	37	50	714	914		30	50	629	704					
SK 50 T	SK4402	45	60	882	995		37	60	780	704					
SK 60 T	SK4403	55	75	1070	1217		45	75	976	854					
SK 22 TH	SK4601	18.5	25	409	590		15	20	360	519					
SK 27 TH	SK4602	22	30	496	712		18.5	25	409	590					
SK 33 TH	SK4603	30	40	660	941		22	30	496	712					
SK 40 TH	SK4604	37	50	798	1083		30	40	660	941					
SK 50 TH	SK4605	45	60	985	1080		37	50	798	1083					
SK 60 TH	SK4606	55	75	1060	1130		45	60	873	1042					

NOTE

Table 2-33 Losses @ 50°C (122°F) ambient for wall mounted drives

		Driv	e losse	s (W) taking	into consi	deration a	ny curre	nt dera	ting for the	given co	nditions			
Model		Normal Duty						Heavy Duty						
		Nominal rating		3kHz	6kHz	12kHz	Nominal rating		3kHz	6kHz	12kHz			
LS	СТ	kW	hp				kW	hp			Ī			
SK 22 TL	SK4201	18.5	25	517	589		15	20	428	488				
SK 27 TL	SK4202	22	30	611	694		18.5	25	517	589				
SK 33 TL	SK4203	30	40	671	761		22	30	611	694				
SK 40 T	SK4401	37	50	714	898		30	50	629	638				
SK 50 T	SK4402	45	60	882	898		37	60	716	638				
SK 60 T	SK4403	55	75	877	912		45	75	876	775				
SK 22 TH	SK4601	18.5	25	409	590		15	20	360	519				
SK 27 TH	SK4602	22	30	496	712		18.5	25	409	590				
SK 33 TH	SK4603	30	40	660	805		22	30	496	712				
SK 40 TH	SK4604	37	50	798	805		30	40	660	805				
SK 50 TH	SK4605	45	60	850	805		37	50	798	805				
SK 60 TH	SK4606	55	75	871	816		45	60	871	816				

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply types	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	Supply types	Options

2.8 Size 5

2.8.1 Power and current ratings (derating for switching frequency and temperature)

Table 2-34 Maximum permissible continuous output current @ 40°C (104°F) ambient for wall mounted drives

				Normal I	Duty				Heavy D	Outy	
Мос	lel		ninal ing	current (A	n continuo A) @ each frequency	•		ninal		n continuo A) @ each s frequency	witching
LS	СТ	kW	hp	3kHz	6kHz	12kHz	kW	hp	3kHz	6kHz	12kHz
SK 75 T	SK5401	75	100	138	118		55	100	124	82.4	
SK 100 T	SK5402	90	125	168	129		75	125	156	109	
SK 75 TH	SK5601	75	100	84	69		55	75	63	52	
SK 100 TH	SK5602	90	125	99	69		75	100	85	52	

Table 2-35 Maximum permissible continuous output current @ 50°C (122°F) ambient for wall mounted drives

				Normal I	Duty				Heavy D	Outy	
Мос	lel		ninal ing	current (A		us output switching	_	ninal ing	current (A	n continuo A) @ each s frequency	witching
LS	СТ	kW	hp	3kHz	6kHz	12kHz	kW	hp	3kHz	6kHz	12kHz
SK 75 T	SK5401	75	100	138	105.9		55	100	112.7	74.5	
SK 100 T	SK5402	90	125	141	112		75	125	140	99.0	
SK 75 TH	SK5601	75	100	83	51		55	75	63	47	
SK 100 TH	SK5602	90	125	83	51		75	100	75	45	

NOTE

For the definition of ambient temperature, see section 5.3.5 Enclosure design and drive ambient temperature on page 77.

2.8.2 Drive losses

Table 2-36 Losses @ 40°C (104°F) ambient for wall mounted drives

		Driv	e losse	s (W) taking	into consi	deration ar	ny curre	ent dera	ting for the	given co	nditions
Mod	el			Normal	Duty				Heavy D	uty	
		_	ninal ing	3kHz	6kHz	12kHz	-	ninal ing	3kHz	6kHz	12kHz
LS	СТ	kW	hp				kW	hp			
SK 75 T	SK5401	75	100	1471	1640		55	100	1311	1150	
SK 100 T	SK5402	90	125	1830	1781		75	125	1681	1508	
SK 75 TH	SK5601	75	100	1818	2258		55	75	1345	1763	
SK 100 TH	SK5602	90	125	2176	2215		75	100	1792	1714	

NOTE

For the definition of ambient temperature, see section 5.3.5 *Enclosure design and drive ambient temperature* on page 77.

Table 2-37 Losses @ 50°C (122°F) ambient for wall mounted drives

		Driv	e losse	s (W) taking	into consi	deration ar	ny curre	ent dera	ting for the	given co	nditions
Mod	اما			Normal	Duty				Heavy D	uty	
moe			ninal ting	3kHz	6kHz	12kHz		ninal ing	3kHz	6kHz	12kHz
LS	СТ	kW	hp				kW	hp			
SK 75 T	SK5401	75	100	1471	1462		55	100	1186	1047	
SK 100 T	SK5402	90	125	1500	1543		75	125	1500	1366	
SK 75 TH	SK5601	75	100	1785	1689		55	75	1345	1763	
SK 100 TH	SK5602	90	125	1785	1688		75	100	1609	1502	

Technical	Derating curves			Mechanical	EMC	AC line	Motor cable	General	I/O	Supply types	Options
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	Supply types	Options

2.9 Size 6

2.9.1 Power and current ratings (derating for switching frequency and temperature)

Table 2-38 Maximum permissible continuous output current @ 40°C (104°F) ambient for wall mounted drives

				Normal I	Duty				Heavy D	Outy	
Mod	el		ninal ing	current (A	n continuo A) @ each frequency	switching		ninal ing		n continuo A) @ each s frequency	witching
LS	СТ	kW	hp	3kHz	6kHz	12kHz	kW	hp	3kHz	6kHz	12kHz
SK 120 T	SK6401	110	150	202	164.1		90	150	180	134.5	
SK 150 T	SK6402	132	200	236	157.7		110	150	210	129.7	
SK 120 TH	SK6601	110	150	125	74		90	125	100	74	
SK 150 TH	SK6602	132	175	144	74		110	150	125	74	

Table 2-39 Maximum permissible continuous output current @ 50°C (122°F) ambient for wall mounted drives

				Normal I	Duty				Heavy D	Outy	
Mod	el		ninal ing	current (A	n continuo A) @ each frequency	switching		ninal ing	current (A	n continuo A) @ each s frequency	witching
LS	СТ	kW	hp	3kHz	6kHz	12kHz	kW	hp	3kHz	6kHz	12kHz
SK 120 T	SK6401	110	150	191.5	147.6		90	150	180	121.5	
SK 150 T	SK6402	132	200	198.4	138.1		110	150	190	116.2	
SK 120 TH	SK6601	110	150	98	59		90	125	98	59	
SK 150 TH	SK6602	132	175	98	59		110	150	98	59	

NOTE

For the definition of ambient temperature, see section 5.3.5 Enclosure design and drive ambient temperature on page 77.

2.9.2 Drive losses

Table 2-40 Losses @ 40°C (104°F) ambient for wall mounted drives

		Driv	e losse	s (W) taking	into consi	deration ar	ny curre	ent dera	ting for the	given co	nditions
Mod	lel			Normal	Duty				Heavy D	uty	
11100		-	ninal ting	3kHz	6kHz	12kHz		ninal ing	3kHz	6kHz	12kHz
LS	СТ	kW	hp				kW	hp			
SK 120 T	SK6401	110	150	2058	2153		90	150	1817	1772	
SK 150 T	SK6402	132	200	2477	2255		110	150	2192	1888	
SK 120 TH	SK6601	110	150	2573	2438		90	125	2573	2438	
SK 150 TH	SK6602	132	175	3106	2438		110	150	3106	2438	

NOTE

For the definition of ambient temperature, see section 5.3.5 Enclosure design and drive ambient temperature on page 77.

Table 2-41 Losses @ 50°C (122°F) ambient for wall mounted drives

		Driv	e losse	s (W) taking	into consi	deration ar	ny curre	ent dera	ting for the	given co	nditions
Mod	lel			Normal	Duty				Heavy D	uty	
moc	.01		ninal ing	3kHz	6kHz	12kHz		ninal ing	3kHz	6kHz	12kHz
LS	СТ	kW	hp				kW	hp			
SK 120 T	SK6401	110	150	1942	1939		90	150	1817	1610	
SK 150 T	SK6402	132	200	2068	1997		110	150	1979	1715	
SK 120 TH	SK6601	110	150	2084	1978		90	125	2084	1978	
SK 150 TH	SK6602	132	175	2084	1978		110	150	2084	1978	

For through-panel mounting losses see Table 5-6 on page 64.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Cupply types	Options
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	Supply types	Options

2.10 Derating with glanding box and Cover kit (size A only)

Table 2-42 Size A derating with glanding box and Cover kit installed to drive

M	odel	Output current
LS	СТ	Output current
SK 1 M	SKA1200037	1.7A
SK 1.2 M	SKA1200055	2.2A
SK 1.5 M	SKA1200075	3.0A

For sizes B and C there is no derating due to forced ventilation from fan.

This is needed to allow the drive to meet the requirements of UL type 1.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply types	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	Supply types	Options

3 Drive voltage levels

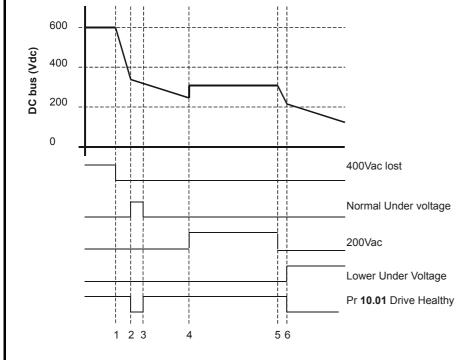
Condition	110V drives	200V drives	400V drives	575V drives	690V drives
OV trip level	415 Vdc	415 Vdc	830 Vdc	990 Vdc	1190 Vdc
Braking level	390 Vdc	390 Vdc	780 Vdc	930 Vdc	1120Vdc
Rated upper level (AC mains +10% x 1.4142)	373 Vdc	373 Vdc	747 Vdc	895 Vdc	1073 Vdc
Rated lower level (AC mains -10% x 1.4142)	255 Vdc	255 Vdc	484 Vdc	636 Vdc	636 Vdc
*UV reset level	215 Vdc	215 Vdc	425 Vdc	590 Vdc	590 Vdc
UV trip level	175 Vdc	175 Vdc	330 Vdc	435 Vdc	435 Vdc
Standard ramp voltage	375 Vdc	375 Vdc	Eur: 750 Vdc USA: 775 Vdc	895 Vdc	1075 Vdc

^{*} These are the absolute minimum DC voltages that the drive can be supplied with. If the drive is not supplied with at least this voltage, it will not reset out of a UV trip at power up.

Output frequency: 0 to 1500Hz

Output voltage: 3 phase, 0 to drive rating (240, 480, 575 or 690 Vac maximum set by Pr 08).

Low DC bus operation (Pr 6.10)


- 0 Low DC bus operation disabled
- 1 Low DC bus operation enabled

The Low DC bus operation is designed to enable 3 phase 400VAC (medium voltage) Digidrive SK's to be run off a single phase 200VAC (low voltage) supply in the event of a primary 400VAC supply failure.

When the primary supply fails, the back up supply can be switched in. This will allow the drive to control the motor at a reduced power, for example to move an elevator up or down to the next floor.

There is no de-rating as such when low DC bus operation is enabled however the power will be limited by the reduced voltage and ripple generated on the DC bus of the drive.

Figure 3-1 Low DC bus operation

- 1. The mains AC supply is removed.
- 2. The drive trips UV. Power down parameters are saved.
- 3. After the down parameters are saved, the UV trip is cleared. Drive will operate normally with the lower UV level set.
- 4. Back-up AC supply is applied
- 5. Back-up AC supply is removed
- 6. Drive trips UV. Power down parameters are not saved.

Note: If the DC voltage is greater than 425Vdc after 3, the UV level will return to normal.

NOTE

This function is only available on sizes B, C and D.

Technical Derating curves Drive voltage DC bus Mechanical AC line Motor cable I/O General FMC Supply types Options installation specification data and losses levels reactors lengths data design

When Pr **6.10** is enabled and the DC bus voltage is less than 330VDC, the drives display will flash LoAC (Low AC) to indicate that it is running off the low voltage back up supply.

NOTE

This mode is designed for use with a backup power supply and not for using a 400VAC (medium voltage) Digidrive SK in a 200VAC (low voltage) application. As shown in the above diagram, the drives power down save parameters are saved at point 2. If the drive was to be used on a 200VAC supply, the DC bus will never fall through point 2 and power down save parameters will not be saved.

Low DC bus operation voltage levels (Pr 6.10 enabled)

>425Vdc - normal operation <330Vdc - LoAC operation

<230Vdc - UV trip

3.1 Input voltage

3.1.1 Single phase

100V to 120V ±10%

48Hz to 62Hz

or:

200V to 240V ±10%

48Hz to 62Hz

3.1.2 Three phase 200V

200V to 240V ±10%

48Hz to 62Hz (48Hz to 65Hz for size 2 to 6)

Phase imbalance 3% (between phases) or 2% negative phase sequence (IEC 146-1-1 Immunity class C)

3.1.3 Three phase 400V

380V to 480V ±10%

48Hz to 62Hz (48Hz to 65Hz for size 2 to 6)

Phase imbalance 3% (between phases) or 2% negative phase sequence (IEC 146-1-1 Immunity class C)

It is possible to run the drives on lower supply voltages than those specified above (up to -20%) but only with de-rating of the product. Running a 400V product on a 230V single phase supply (at a very much reduced output power) is possible on frame sizes B & C.

3.1.4 Three phase 575V

500V to 575V ±10%

48Hz to 65Hz

3.1.5 Three phase 690V

500V to 690V ±10%

48Hz to 65Hz

The drive is suitable in a circuit capable of delivering not more than 100,000 rms symmetrical Amperes at 264Vac rms maximum (200v drives), 528Vac rms maximum (400V drives), 600Vac rms maximum (575V and 690V drives) or 132Vac rms (110V drives).

For drives without a D.C. Bus choke (up to 4kW), an input line reactor should be used if the fault level exceeds 5kA.

3.2 Single phase ratings (size 2 and 3)

See Table 3-1 for the single phase supply capability of Digidrive SK.

NOTE

The supply should be connected between L1 and L2.

The single phase supply should have the same RMS voltage as the line to line RMS voltage that the drive is designed for. Minimum and maximum voltages are the same as for 3 phase operation.

With a single-phase supply the drive power rating is considerably reduced in comparison with the normal case. The output current capability is not reduced. There are two possible modes of operation:

 Motor matched to the drive power capability. In this case the motor can deliver its full rated torque at any speed up to base speed, but

- this is less than the drive capability at reduced speed. Table 3-1 shows the power and current ratings for a suitable motor.
- Motor run with restricted power. In this case the motor may have any current rating up to the normal output current rating of the drive. The available torque will be reduced at higher speeds in order to avoid exceeding the power restriction. Table 3-1 shows the power ratings for a suitable motor. The current rating should be selected to suit the required maximum torque at low speed.

The current and power ratings given are for continuous operation.

A PH trip would result if the limits are exceeded.

Continuous operation at output currents above the values given will result in the drive tripping O.ht3.

Drive rated output power is given for 220V, 400V and 525V supplies. Values have been derived from extensive calculations and take into account capacitor ripple current and life time, rectifier peak and RMS current and supply RMS current.

Supply fuses and cable sizes need to be the same value as specified for the drive operating with a 3 phase supply at normal rated power. This is because with a single phase supply the RMS supply current is much greater for the same output power.

There is no further derating due to switching frequency as it is the input stage and DC bus components which derate the drive.

Table 3-1 Single phase ratings (size 2 and 3)

Drive	type	Corresponding motor rated current (A)	Drive rated output power (kW)
LS	СТ		
SK 4.5 TL	SK2201		
SK 5.5 TL	SK2202	11.6*	3.5*
SK 8 TL	SK2203		
SK 11 TL	SK3201	28.4	8.5
SK 16 TL	SK3202	28.4	8.5
SK 8 T	SK2401	6.6*	3.4*
SK 11 T	SK2402	6.6	3.4
SK 16 T	SK2403	6.6	3.4
SK 22 T	SK3401	11.4	5.9
SK 27 T	SK3402	11.4	5.9
SK 33 T	SK3403	11.4	5.9
SK 3.5 TM	SK3501	5.4	3.7
SK 4.5 TM	SK3502	6.1	4.2
SK 5.5 TM	SK3503	8.4	5.7
SK 8 TM	SK3504	11.0	7.5
SK 11 TM	SK3505	12.0	8.2
SK 16 TM	SK3506	12.0	8.2
SK 22 TM	SK3507	12.0	8.2

^{*} These values will be slightly less since there is less DC bus capacitance with these Digidrive SK models compared to the equivalent Unidrive SP models.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

4 DC bus design

4.1 Digidrive SK size A to D

Table 4-1 Digidrive SK 200V units DC bus data

Мо	del	DC bus Capacitance	DC bus inductance	Inrush resistance at 25°C	Peak inrush current	
LS	СТ	μ F	mH	Ω	Α	
SK 0.5 M	SKA1200025	330				
SK 1 M	SKA1200037	390		22	17.0	
SK 1.2 M	SKA1200055	660		22	17.0	
SK 1.5 M	SKA1200075	780				
SK 2 M/TL	SKBD200110	940		13.6	27.4	
SK 2.5 M/TL	SKBD200150	1410		13.0	21.4	
SK 3.5 M/TL	SKCD200220	1880		20.4	18.3	
SK 4.5 M/TL	SKDD200300	1760	0.7	20.4	19.1	
SK 5 TL	SKD3200400	1760	0.7	20.4	13.1	

Table 4-2 Digidrive SK 400V units DC bus data

M	odel	DC bus Capacitance	DC bus inductance	Inrush resistance at 25°C	Peak inrush current
LS	СТ	μ F	mH	Ω	Α
SK 1 T	SKB3400037				
SK 1.2 T	SKB3400055	165			
SK 1.5 T	SKB3400075	1		44	17.0
SK 2 T	SKB3400110	195			
SK 2.5 T	SKB3400150	235			
SK 3.5 T	SKC3400220				
SK 4.5 T	SKC3400300	470			11.3
SK 5.5 T	SKC3400400	1		66	
SK 7 T	SKD3400550	440	1.8		11.9
SK 10 T	SKD3400750	440	1.0		11.9

NOTE

The 110V drives cannot be DC bus paralleled.

The Digidrive SK size B,C,D & 2,3 have a soft-start circuit, which is in circuit when the drive is supplied from the AC or DC terminals.

4.2 Digidrive SK size 2 to 6

Table 4-3 Digidrive SK size 2 DC bus data

Mo	del	DC bus Capacitance	DC bus inductance	Inrush resistance at 25°C	Peak inrush current	
LS	СТ	μ F	mH	Ω	Α	
SK 4.5 TL	SK2201					
SK 5.5 TL	SK2202	1880		12		
SK 8 TL	SK2203	1				
SK 8 T	SK2401	470	1.4		30	
SK 11 T	SK2402			24		
SK 16 T	SK2403	705		24		
SK 20 T	SK2404					

Technical	Derating curves	Drive voltage	DC bus	Mechanical	FMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

Table 4-4 Digidrive SK Size 3 DC bus data

Мо	del	DC bus Capacitance	DC bus inductance	Inrush resistance at 25°C	Peak inrush current	
LS	СТ	μ F	mH	Ω	Α	
SK 11 TL	SK3201	5400		8		
SK 16 TL	SK3202	3400		O		
SK 22 T	SK3401		0.7			
SK 27 T	SK3402	1350		14		
SK 33 T	SK3403					
SK 3.5 TM	SK3501				50	
SK 4.5 TM	SK3502				30	
SK 5.5 TM	SK3503					
SK 8 TM	SK3504	1000	4	18		
SK 11 TM	SK3505					
SK 16 TM	SK3506					
SK 22 TM	SK3507					

Table 4-5 Digidrive SK size 4 DC bus data

Мо	del	DC bus Capacitance	DC bus inductance	Peak inrush current
LS	СТ	μ F	mH	Α
SK 22 TL	SK4201			
SK 27 TL	SK4202	4400	0.211	73
SK 33 TL	SK4203			
SK 40 T	SK4401	1100	0.85	37
SK 50 T	SK4402	2200	0.423	73
SK 60 T	SK4403	2200	0.423	70
SK 22 TH	SK4601			
SK 27 TH	SK4602			
SK 33 TH	SK4603	733	1.27	35
SK 40 TH	SK4604	133	1.27	35
SK 50 TH	SK4605			
SK 60 TH	SK4606			

Digidrive SK size 5 and 6 use AC line chokes instead of DC bus chokes

Table 4-6 Digidrive SK size 5 DC bus data

	4.0.0 . 0 2.9.4 0 0.0.2.0 0 20 0.4.4.								
Model		DC bus Capacitance	AC line inductance	Peak inrush current					
LS	СТ	μ F	per phase (mH)	Α					
SK 75 T	SK5401	3300	0.150	110					
SK 100 T	SK5402	3300	0.130	110					
SK 75 TH	SK5601	1467	0.470	70					
SK 100 TH	SK5602	1407	0.470						

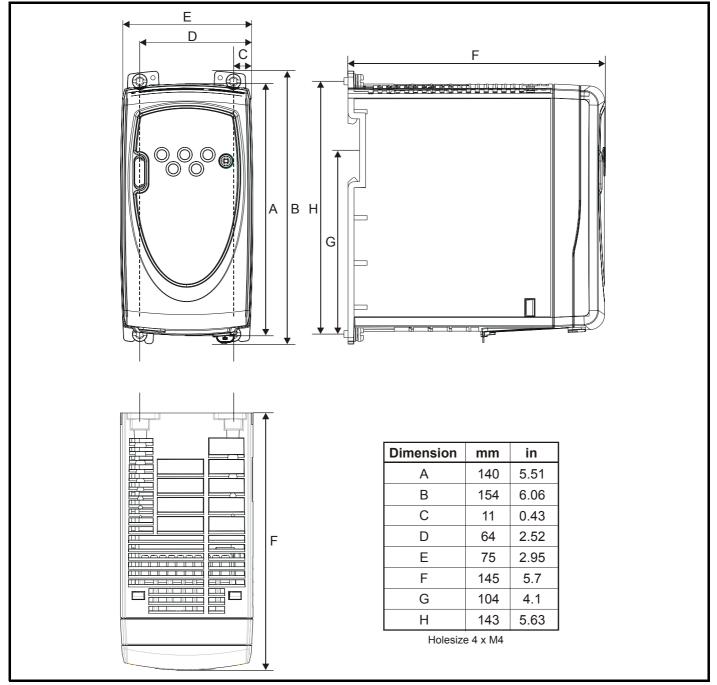
Table 4-7 Digidrive SK size 6 DC bus data

Tubic +7 Di	able 47 Digitalive of Size 0 Do bus data								
Model		DC bus Capacitance	AC line inductance	Peak inrush current					
LS	СТ	μ F	per phase (mH)	Α					
SK 120 T	SK6401	4400	0.054						
SK 150 T	SK6402	5500	0.054						
SK 120 TH	SK6601	2200	0.313						
SK 150 TH	SK6602	2200	0.515						

NOTE

The inrush current for all drives after a brown-out can be larger than the power-up inrush. For sizes 4 to 6, the inrush current is limited by a controlled rectifier to below the rated current of the drive.

Supply types Technical Derating curves Drive voltage DC bus Mechanical installation AC line Motor cable General I/O EMC Options design data and losses levels reactors lengths data specification

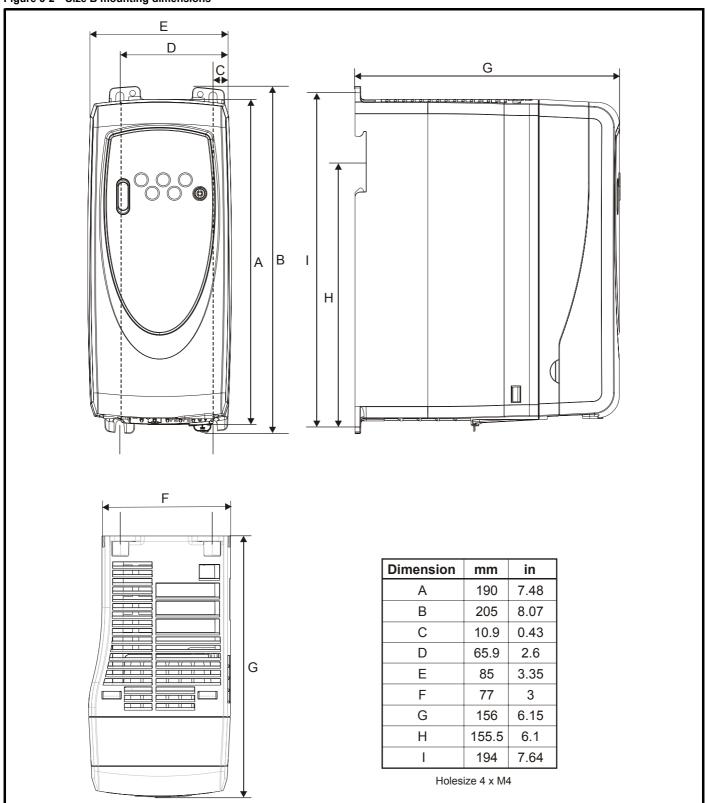

5 Mechanical installation

5.1 Mounting methods

Digidrive SK size A to D

5.1.1 Mechanical dimensions

Figure 5-1 Size A mounting dimensions

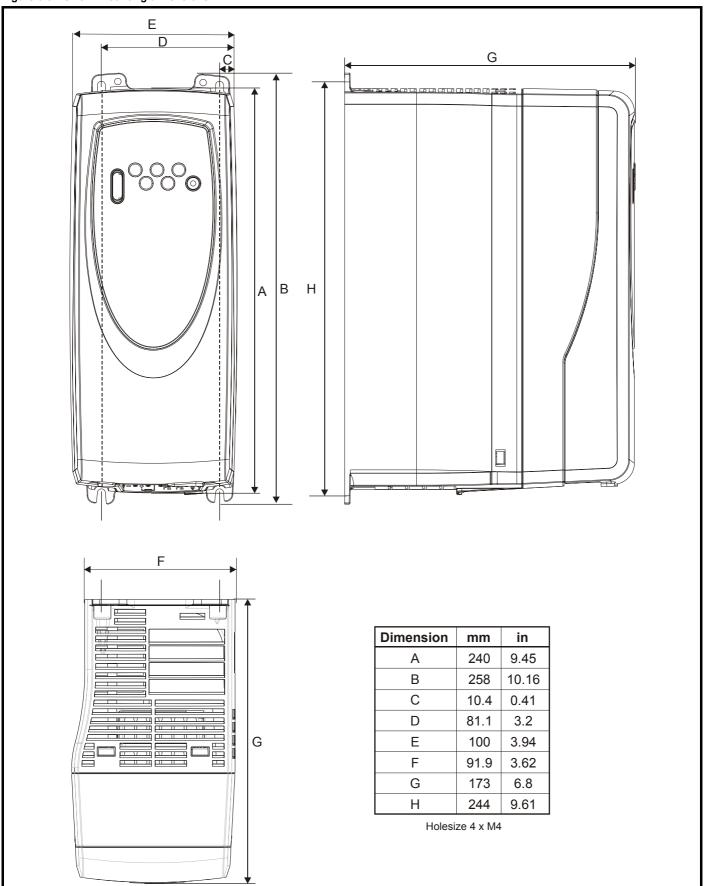

NOTE

If DIN rail mounting is used in an installation where the drive is to be subjected to shock or vibration, it is recommended that the bottom mounting screws are used to secure the drive to the back plate. If the installation is going to be subjected to heavy shock and vibration, then it is recommended that the drive is surface mounted rather than DIN rail mounted.

The DIN rail used should conform to DIN46277-3.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

Figure 5-2 Size B mounting dimensions


NOTE

If DIN rail mounting is used in an installation where the drive is to be subjected to shock or vibration, it is recommended that the bottom mounting screws are used to secure the drive to the back plate. If the installation is going to be subjected to heavy shock and vibration, then it is recommended that the drive is surface mounted rather than DIN rail mounted

The DIN rail used should conform to DIN46277-3.

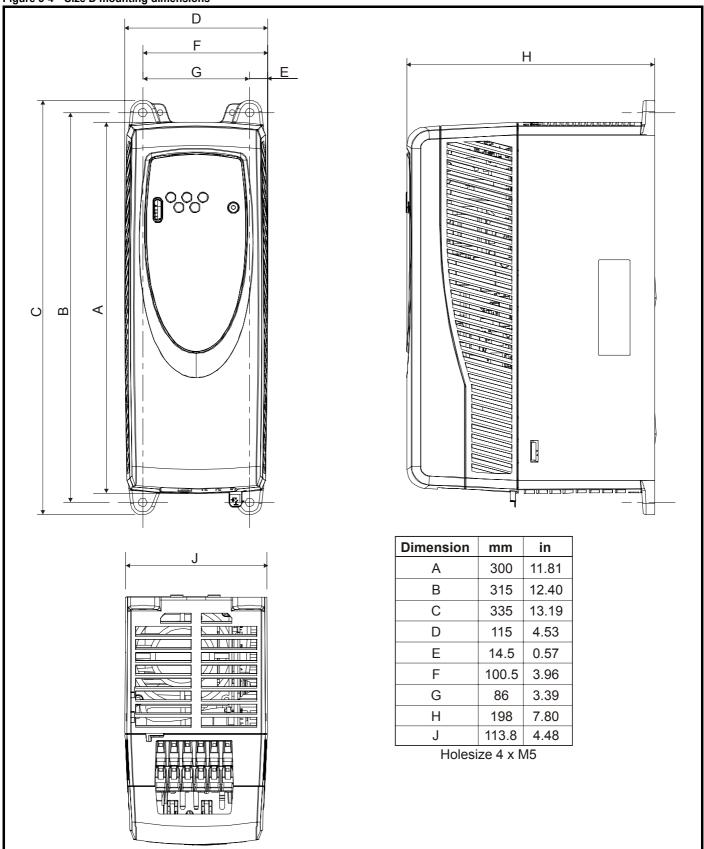
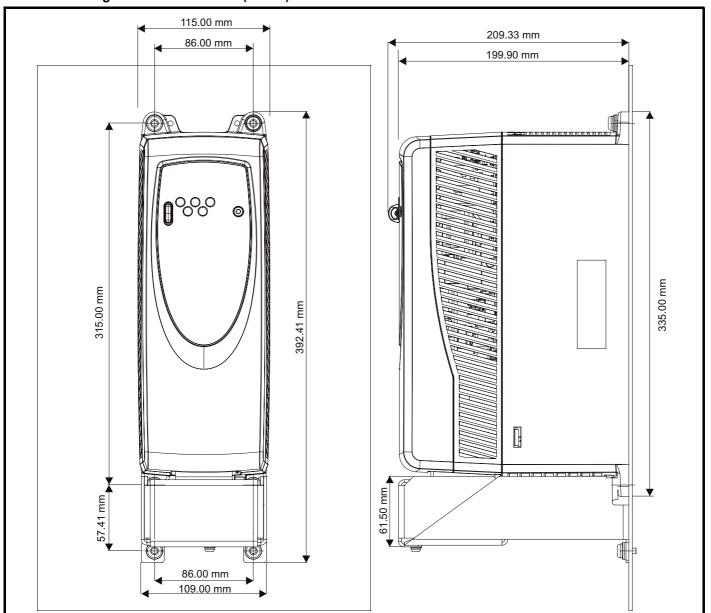
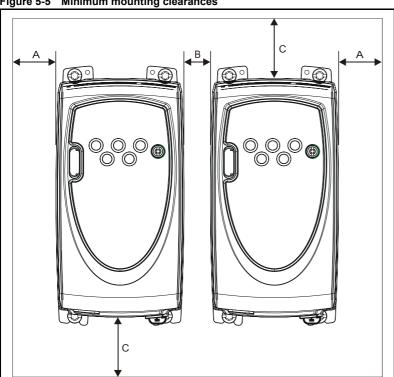


Figure 5-3 Size C mounting dimensions

Size C is not DIN rail mountable.


Figure 5-4 Size D mounting dimensions

Size D is not DIN rail mountable.


Technical data Derating curves and losses Drive voltage levels DC bus design DC bus de

5.1.2 Mounting with Conduit Boxes (size D)

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

5.1.3 Minimum mounting clearances Figure 5-5 Minimum mounting clearances

Drive size		A		В	(
Drive size	mm	in	mm	in	mm	in
Α			0	0		
B (≤0.75kW)			10*	0.39*		
B (≥1.1kW)	10	0.39	0	0	100	3.94
С			50*	1.97*	100	3.94
D			0	0		
2 to 6	30	1.18	30	1.18		

^{*}This is the minimum spacing between drives measured at the base of the drives where it is mounted against a back plate/flat surface.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

Digidrive SK size 2 to 6

The Digidrive SK size 2 to 6 can be either surface or through-panel mounted using the appropriate brackets.

The following drawings show the dimensions of the drive and mounting holes for each method to allow the back plate to be prepared.

If the drive has been used at high load levels for a period of time, the heatsink can reach temperatures in excess of 70° C (158°F). Human contact with the heatsink should be prevented.

Surface mounting

Figure 5-6 Surface mounting the size 2 drive

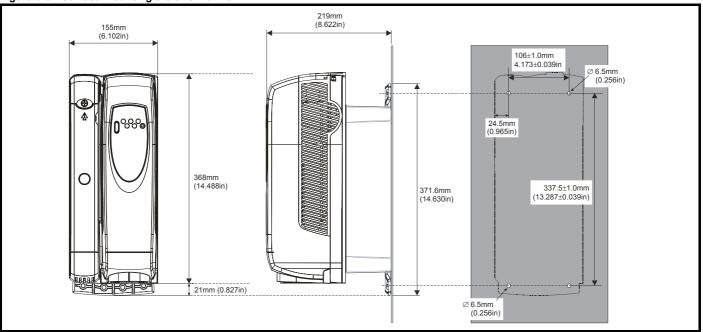
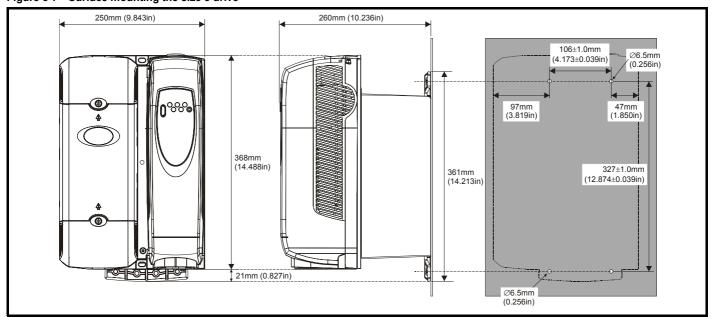



Figure 5-7 Surface mounting the size 3 drive

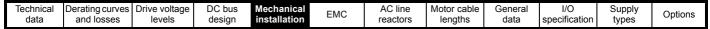


Figure 5-8 Surface mounting the size 4 drive

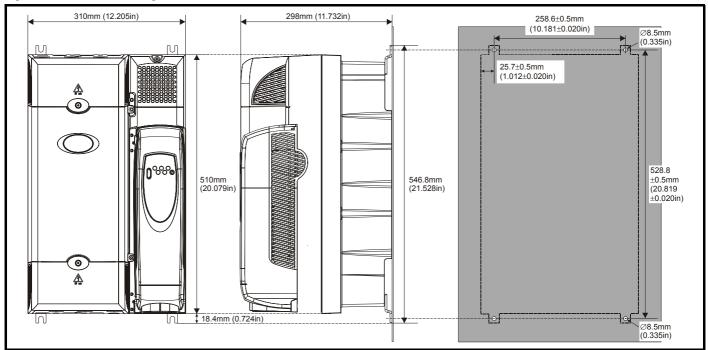
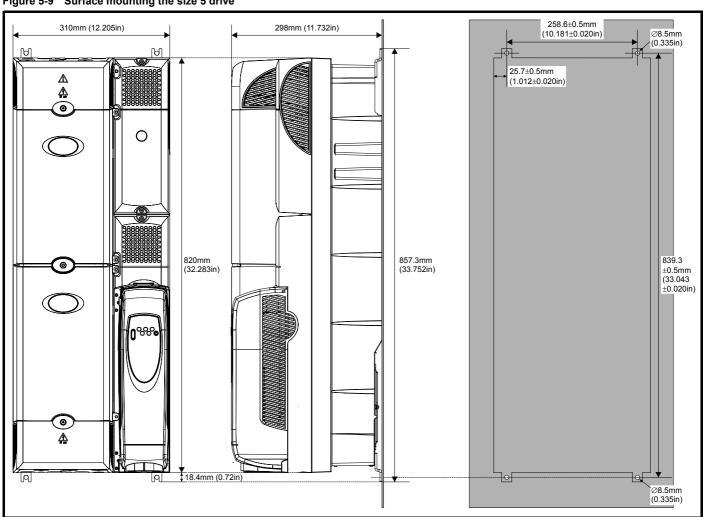



Figure 5-9 Surface mounting the size 5 drive

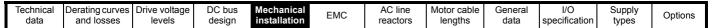
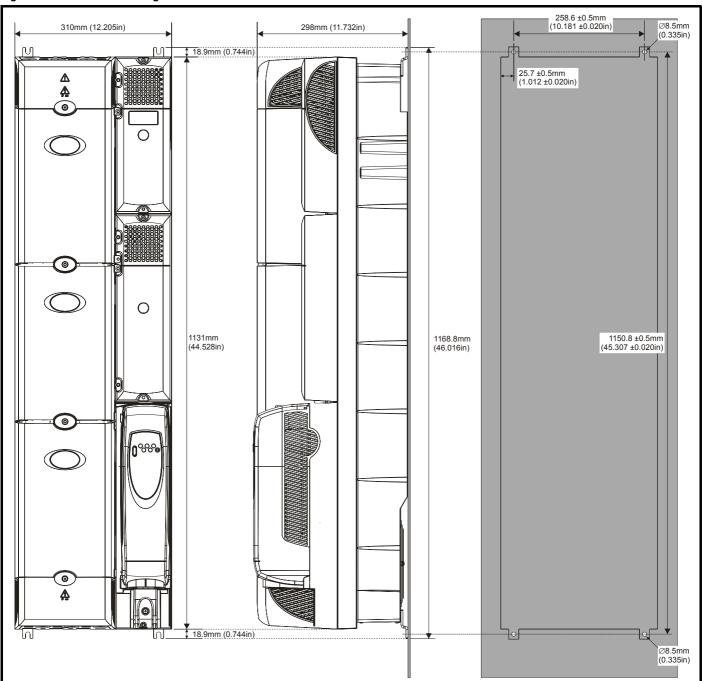



Figure 5-10 Surface mounting the size 6 drive

Technical	Derating curves	Drive voltage	DC bus	Mechanical		AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

Through-panel mounting

When the drive is through-panel mounted, the main terminal cover(s) must be removed in order to provide access to the mounting holes. Once the drive has been mounted, the terminal cover(s) can be replaced.

Figure 5-11 Through-panel mounting of a size 2 drive

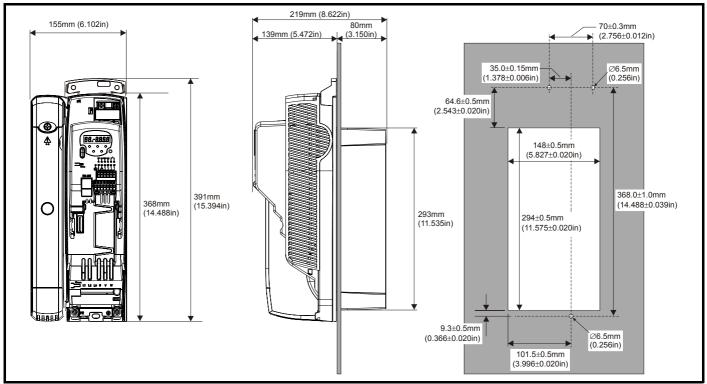
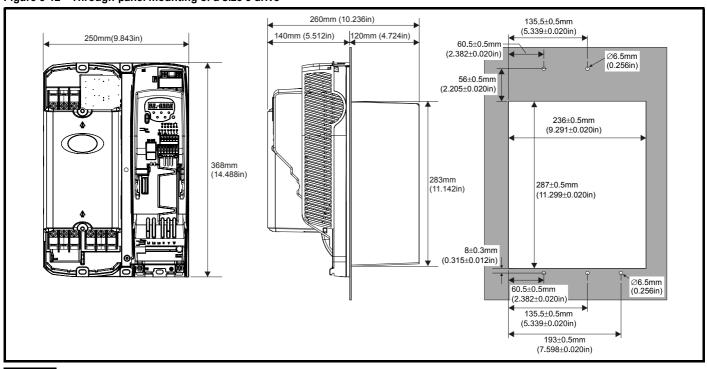
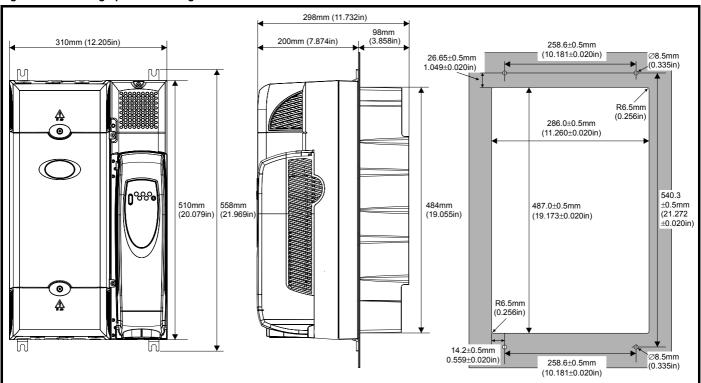



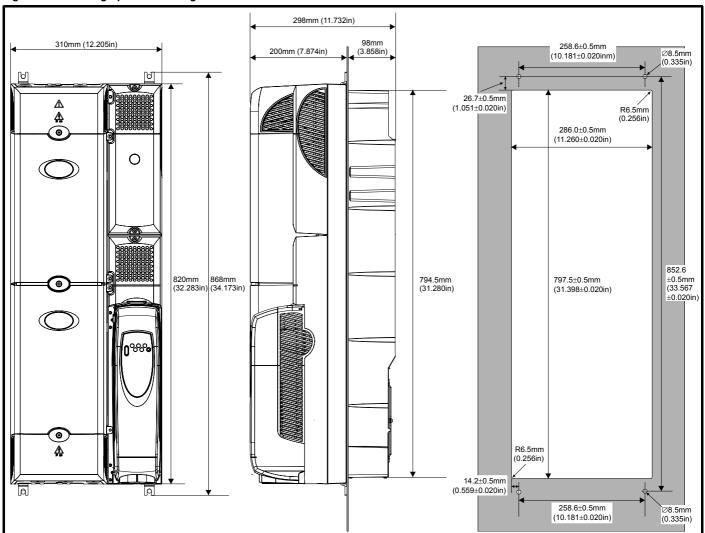
Figure 5-12 Through-panel mounting of a size 3 drive



NOTE

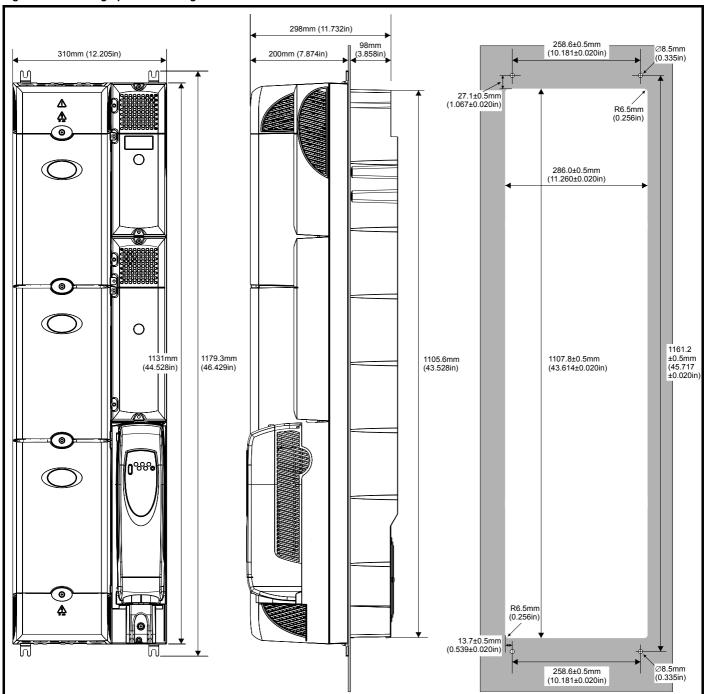
The control terminal cover must be removed on Digidrive SK sizes 2 and 3 to allow access to the mounting holes for through panel mounting.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options


Figure 5-13 Through-panel mounting of a size 4 drive

When a Digidrive SK size 4 or 5 is through-panel mounted, the grounding link bracket must be folded upwards. This is required to provide a grounding point for the grounding bracket. See section *Grounding hardware* on page 100 for details.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	LMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options


Figure 5-14 Through-panel mounting of a size 5 drive

When a Digidrive SK size 4 or 5 is through-panel mounted, the grounding link bracket must be folded upwards. This is required to provide a grounding point for the grounding bracket. See section *Grounding hardware* on page 100 for details.

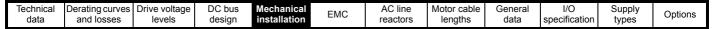

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

Figure 5-15 Through-panel mounting of a size 6 drive

NOTE

In order to achieve IP54 rating and/or NEMA 12 for through-panel mounting, an IP54 insert must be installed (size 2) and the heatsink fan must be replaced with an IP54 rated fan (size 2 to 4). Additionally, the gasket provided should be installed between the drive and the backplate to ensure a good seal for the enclosure. See Figure 5-25 on page 61.

5.1.4 Mounting with Conduit Boxes Figure 5-16 Size 2 drive with Conduit Box

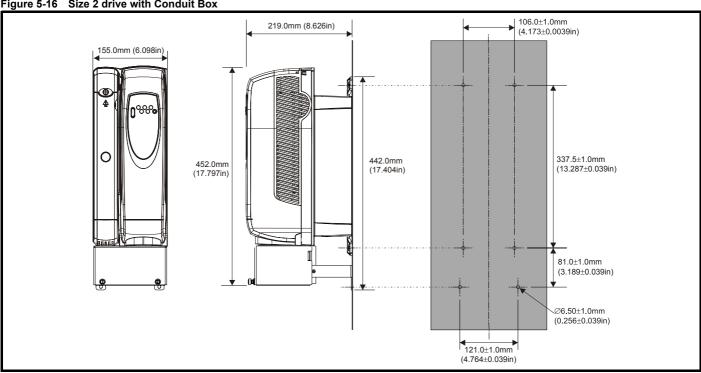
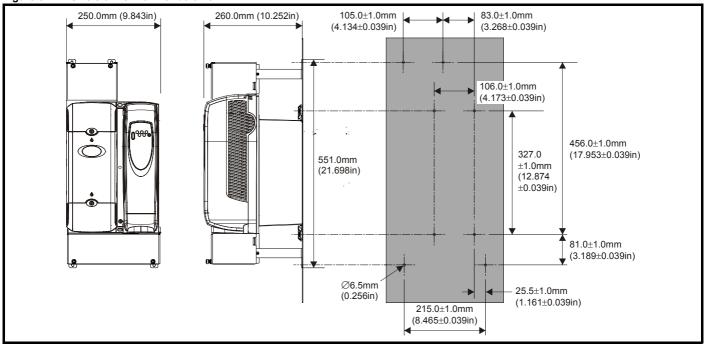



Figure 5-17 Size 3 drive with Conduit Box

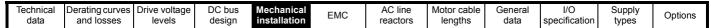


Figure 5-18 Size 4 with Conduit Box

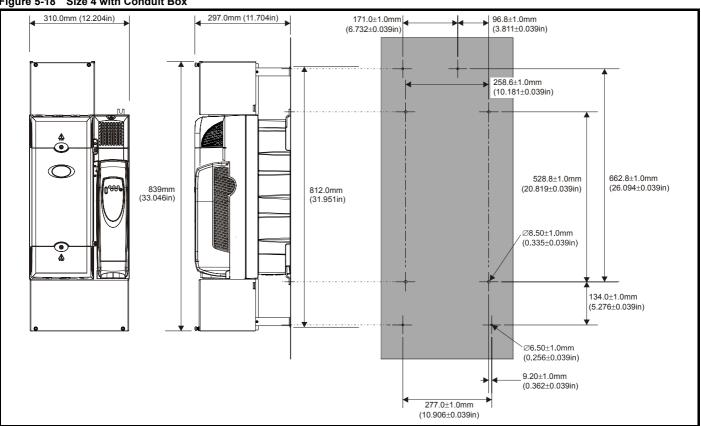
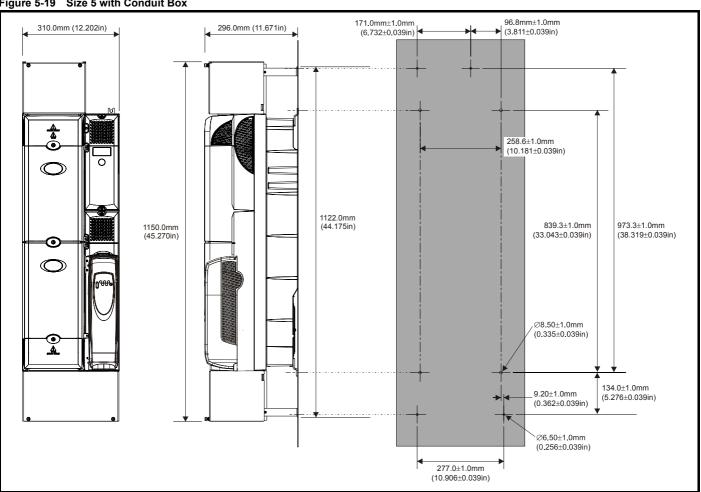
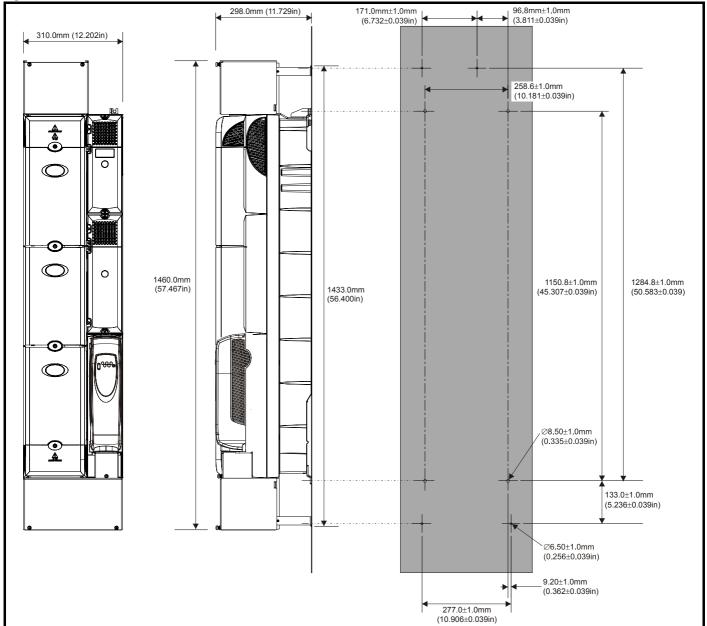
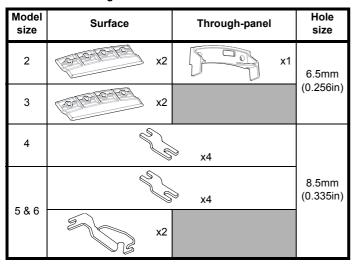


Figure 5-19 Size 5 with Conduit Box

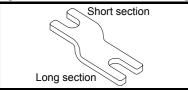




Figure 5-20 Size 6 with Conduit Box 96.8mm±1.0mm (3.811±0.039in) 171.0mm±1.0mm (6.732±0.039in) 298.0mm (11.729in)

Technical Derating curves Drive voltage DC bus AC line Motor cable I/O Supply General **EMC** Options and losses design installation reactors lengths specification types data levels data

5.1.5 Mounting brackets

Table 5-1 Mounting brackets


To avoid damaging the through-panel mounting bracket when through-panel mounting a size 2, the through-panel mounting bracket should be used to fix the top of the drive to the back plate **before** the bottom of the drive is fixed to the back plate. The tightening torque should be 4N.m (2.9 lb ft).

Fitting of the Digidrive SK mounting brackets on size 4, 5 and 6

Digidrive SK size 4,5 and 6 use the same mounting brackets for surface and through-panel mounting.

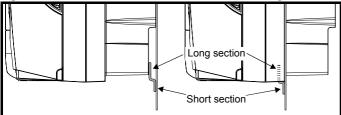
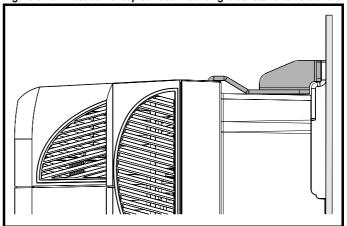

The mounting bracket has a long section and short section.

Figure 5-21 Size 4, 5 and 6 mounting bracket

The mounting bracket must be installed in the correct orientation with the long section inserted into or attached to the drive and the short section attached to the backplate. Figure 5-22 shows the orientation of the mounting bracket when the drive is surface mounted and through-panel mounted.


Figure 5-22 Orientation of the size 4, 5 and 6 mounting bracket

When through-panel mounted, the mounting brackets on the left hand side of the drive can be secured using the screws already located there. On the right hand side, the mounting brackets are just inserted into the slots in the chassis of the drive; no fixing screws are present here.

Digidrive SK size 5 and 6 also requires two top mounting brackets when the drive is surface mounted. The two brackets should be installed to the top of the drive as shown in Figure 5-23.

Figure 5-23 Location of top surface mounting brackets for size 5 and 6

The maximum torque setting for the screws into the drive chassis is 10N.m (7.4 lb ft).

5.1.6 Large Digidrive SK lifting bracket

A lifting bracket for Digidrive SK sizes 4-6 modules is available (part number 6541-0073-00), which provides a safe lifting point to which a hoist may be attached when wall mounting these large drives.

Wall mounting of large SK drives has proved awkward due to the lack of a suitable lifting point with which to attach a hoist to.

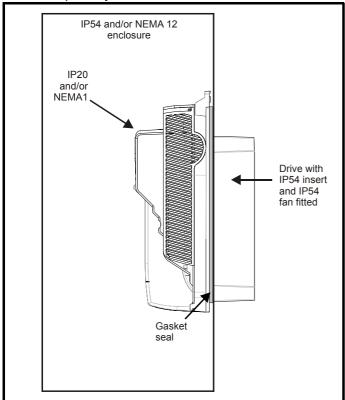
The lifting bracket should only be attached to terminals L1, L2 and L3, as shown in figure 1 below. M10 terminals should then be retightened to 5 N.m minimum.

Figure 5-24 Large Digidrive SK lifting bracket

5.2 Enclosing standard drive for high environmental protection

An explanation of environmental protection rating is provided in section 9.6 *Environmental protection rating* on page 107.

The standard drive (Digidrive SK size 2 to 6) is rated to IP20 pollution degree 2 (dry, non-conductive contamination only), (NEMA 1). However, it is possible to configure the drive to achieve IP54 rating (UL Type 12 / NEMA 12) at the rear of the heatsink for through-panel mounting (some current derating is required for size 2). Refer to Table 2-21.


This allows the front of the drive, along with various switchgear, to be housed in an IP54 (UL Type 12 / NEMA 12) enclosure with the heatsink protruding through the panel to the external environment. Thus, the majority of the heat generated by the drive is dissipated outside the enclosure maintaining a reduced temperature inside the enclosure.

Supply types Technical Derating curves Drive voltage DC bus AC line Motor cable General I/O Mechanica **EMC** Options data and losses design installation reactors lengths data specification levels

This also relies on a good seal being made between the heatsink and the rear of the enclosure using the gaskets provided.

For Type 12 the drive must be mounted on a flat surface of a Type 12 enclosure.

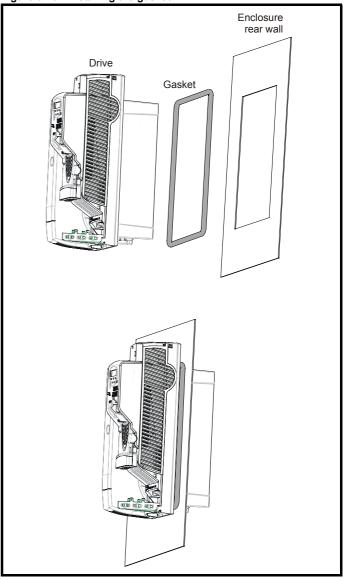
Figure 5-25 Example of IP54 (UL Type 12 / NEMA 12) throughpanel layout

The main gasket should be installed as shown in Figure 5-26. Any screws / bolts that are used for mounting should be installed with the nylon washers provided in the kit box to maintain a seal around the screw hole. See Figure 5-28.

In order to achieve the high IP rating at the rear of the heatsink with size 2, it is necessary to seal a heatsink vent by installing the IP54 insert as shown in Figure 5-27.

For increased fan lifetime in a dirty environment the heatsink fan must be replaced with an IP54 fan.

Table 5-2 Fan part numbers


Frame size	IP54 fan part number	Number of fans
2	3251-3024-00	1
3	3251-4024-00	1
4	3251-7824-01	2

If the standard fan is used in a dirt/dusty environment, reduced fan lifetime will result. Regular cleaning of the fan and heatsink is recommended in this environment.

Digidrive SK size 5 and 6

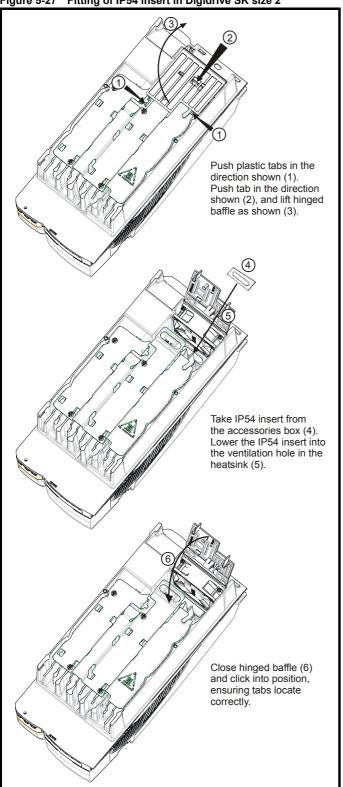

When through hole mounted, the Digidrive SK size 5 and 6 are rated to IP54 and/or NEMA 12 as standard.

Figure 5-26 Installing the gasket

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

Figure 5-27 Fitting of IP54 insert in Digidrive SK size 2

In order to remove the IP54 insert, repeat steps (1) (2) and (3), reverse steps (5) and (4) and repeat step (6).

The IP54 fan can be installed at the same time as the IP54 insert. The connector on the existing fan should be unplugged from the power PCB. The existing fan then unclips from the black housing and can be removed. Once the new assembly is complete, the power lead of the new IP5X fan can then be pushed back through the heatsink and the grommet inserted in to the hole to ensure the correct seal is maintained. The fan is then clipped into the housing ensuring the blades rotate freely indicating that the fan is installed in the correct orientation.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

For sizes 4 to 6 it may be necessary to improve the rigidity of the through panel mounting surface due to the larger distance between the top and bottom mounting brackets and the need to maintain compression on the gasket.

When the drive is mounted, if the gap between the drive flange (which the gasket rests on) and the rear wall of the enclosure is ≥6mm at any point around the drive then the following methods can be used to compress the gasket further:

- 1. Use a thicker panel for the mounting wall of the enclosure through which the drive is mounted.
- 2. Use an internal backplate to pull the rear wall of the enclosure up to the drive gasket. See Figure 5-28 for details. (Nylon washers are supplied in the standard drive kit for sealing off any nut and bolt mountings that exit through the rear wall of the panel).
- 3. If an internal backplate is not available a separate clamp can be used to simulate option 2. See Figure 5-29. 4 off sealing clamps are supplied in the drive kit box.

Figure 5-28 Option 2 for achieving IP54 (UL type 12 / NEMA 12) through-panel mounting

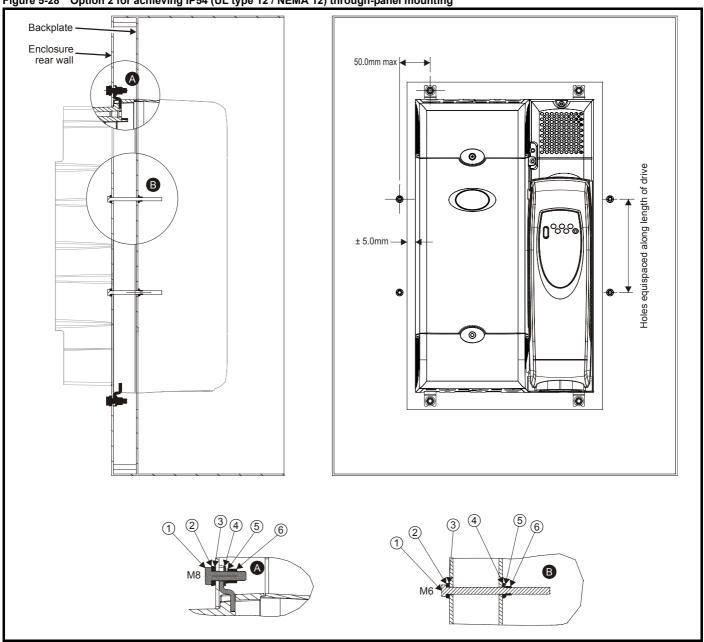


Table 5-3 Description of mountings

Item	Description
1	Bolt
2	Flat washer
3	Nylon washer (from kitbox)
4	Flat washer
5	Spring washer
6	Nut

Table 5-4 Quantity of nylon washers supplied with the drive

Size	e Quantity of M8 (A) Quantity of M6 (B	
2	0	3
3	0	4
4	4 4 4	
5	4	4
6	4	4

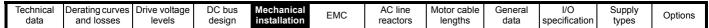


Figure 5-29 Option 3 for achieving IP54 (UL Type 12 / NEMA 12) through panel mounting

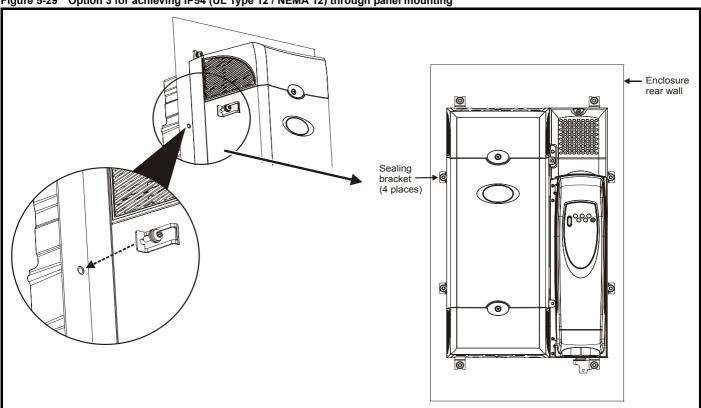


Table 5-5 **Environmental considerations**

Environment	IP54 Insert	Fan	Comments
Clean	Not installed	Standard	
Dry and dusty (non-conductive)	Installed	Standard	Regular cleaning recommended. Fan lifetime may be reduced.
Dry and dusty (conductive)	Installed	Standard/ IP54	Regular cleaning recommended. Fan lifetime may be reduced.
IP54 compliance	Installed	IP54	Regular cleaning recommended.

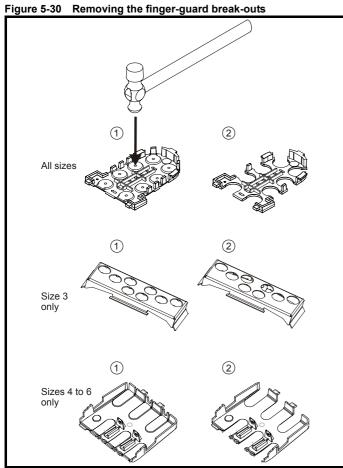
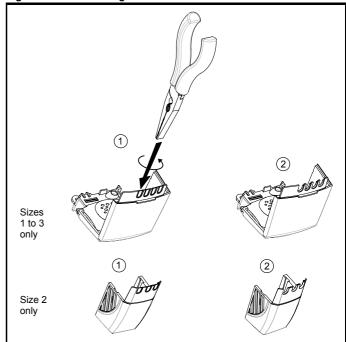

Through-panel mounting lossesWhen designing an IP54 and/or NEMA 12 enclosure, the losses from the front of the drive must be taken into consideration.

Table 5-6 Through-panel mounting losses

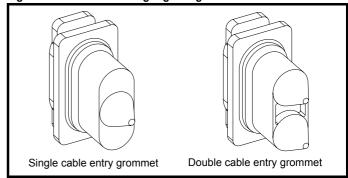
Frame size	Power loss (W)
2	≤75
3	≤100
4	≤204
5	≤347
6	≤480


Supply types Technical Derating curves Drive voltage DC bus AC line Motor cable General I/O Mechanical **EMC** Options data and losses levels design installation reactors lengths data specification

5.2.1 Removing the finger-guard and DC terminal cover break-outs

Place finger-guard on a flat solid surface and hit relevant break-outs with hammer as shown (1). Continue until all required break-outs are removed (2). Remove any flash / sharp edges once the break-outs are removed.

Figure 5-31 Removing the DC terminal cover break-outs



Grasp the DC terminal cover break-outs with pliers as shown (1) and twist to remove. Continue until all required break-outs are removed (2).

Remove any flash / sharp edges once the break-outs are removed. Use the DC terminal cover grommets supplied in the accessory box to maintain the seal at the top of the drive.

Grommets are available for the size 4 to 6 finger-guards. Two versions are available allowing for either single or double cable entries. These are not required if the optional conduit box is installed.

Figure 5-32 Size 4 to 6 finger-guard grommets

The grommets are available as a kit of four grommets under the following part numbers:

9500-0074 Kit of four single entry grommets

9500-0075 Kit of four double entry grommets

If the break-outs are removed from the finger-guard, then the grommets are required for Digidrive SK size 4 to 6 to meet the IP20 standard.

Technical Derating curves Drive voltage DC bus Mechanical installation AC line Motor cable General I/O Supply **EMC** Options types data and losses levels design reactors lengths data specification

5.2.2 UL Type 1 kit

Figure 5-33 UL Type 1 kit

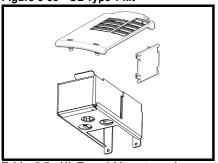


Table 5-7 UL Type 1 kit part numbers

Frame size	Part number
Α	9500-0079
В	9500-0080
С	9500-0081
D	9500-1002

UL Type 1 kit required for Digidrive SK size A to D to meet NEMA 1 and UL Type 1.

5.2.3 Conduit connection boxes

Conduit connection boxes are available as an option. Figure 5-34 demonstrates a conduit connection box installed on a size 4 standard drive.

For further information, refer to section 5.1 *Mounting methods* on page 44.

Figure 5-34 Size 4 standard drive with conduit connection box installed

Table 5-8 Conduit box part numbers

Frame size	Top conduit box	Bottom conduit box
2		6500-0011
3	6500-0033*	6500-0014
4	6500-0017	6500-0018
5	6500-0023	6500-0024
6	6500-0027	6500-0028

^{*}For DC or brake connections only.

The conduit boxes and warning label (3661-0045-01) are required for the size 2 to 6 to meet the requirements of UL Type 1.

5.2.4 Electrical terminals layout

Figure 5-35 Size A power terminal connections

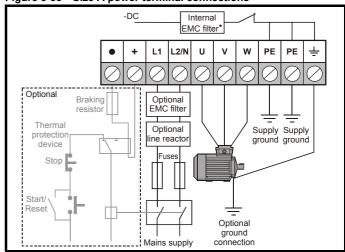
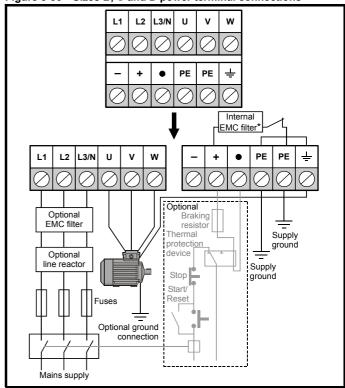
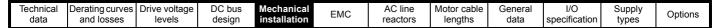
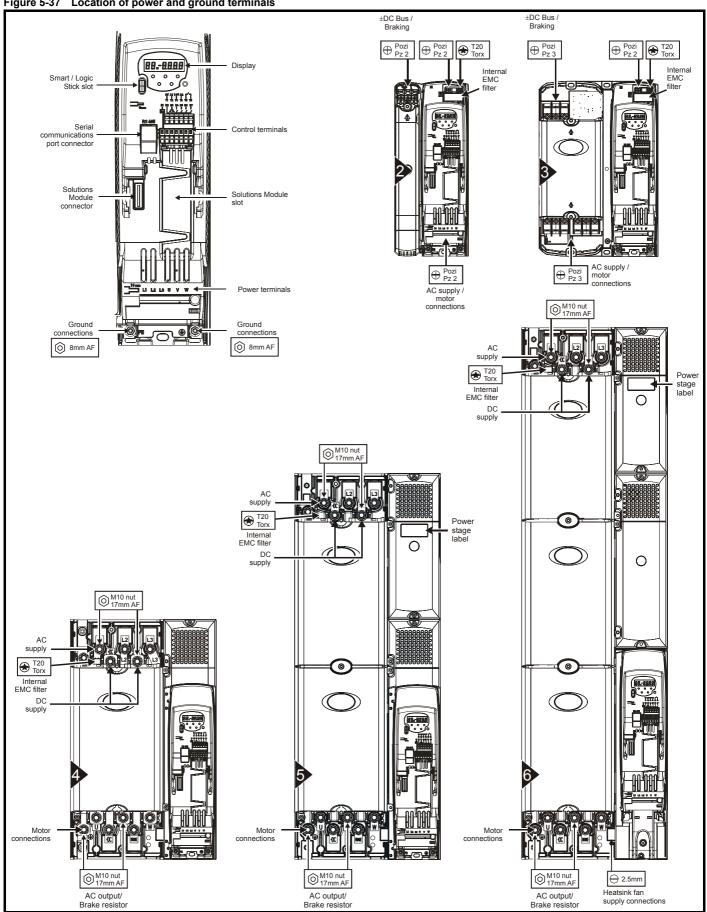



Figure 5-36 Sizes B, C and D power terminal connections


NOTE

The braking terminals are not available on size A 110V drives.


On the Digidrive SK 1.5 ML and 2 ML, the supply should be connected to L1 and L3/N.

NOTE

On the Digidrive SK 1.5 ML and 2 ML, the -DC bus terminal has no internal connection.

Location of power and ground terminals Figure 5-37

Technical Derating curves Drive voltage DC bus Mechanical installation AC line Motor cable General I/O Supply **EMC** Options types and losses design reactors lengths specification data levels data

Terminal sizes and torque settings

To avoid a fire hazard and maintain validity of the UL Listing, adhere to the specified tightening torques for the power and ground terminals. Refer to the following tables.

Table 5-9 Drive control and relay terminal data

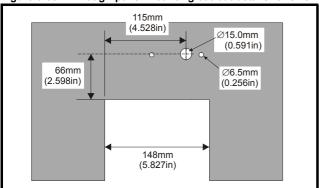
Model	Connection type	
All	Spring terminals	

Table 5-10 Drive power terminal data

Model size	AC terminals	DC and braking terminals	Ground terminals			
Α		0.5Nm (4.4 lb in)				
B, C and D		1.4Nm (12.1 lb in)				
2	Plug-in terminal block 1.5Nm (1.1 lb ft)	Terminal block (M5 screws) 1.5Nm (1.1 lb ft)	M5 stud 4.0Nm (2.9 lb ft)			
3	Terminal block (M6 screws) 2.5Nm (1.8 lb ft)		6.0Nm (4.4 lb ft)			
4	М	M10 stud 12Nm				
5		15Nm	(8.8 lb ft)			
6	(1	(5.5 15 10)				
	±10%					

5.2.5 Heatsink mounted braking resistor

If the drive has been used at high load levels for a period of time, the heatsink and heatsink mounted braking resistor can reach temperatures in excess of 70°C (158°F). Human contact with the heatsink and heatsink mounted braking WARNING resistor should be prevented.

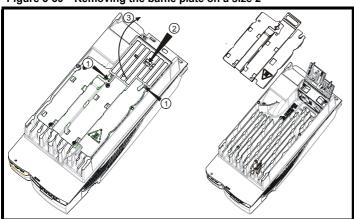


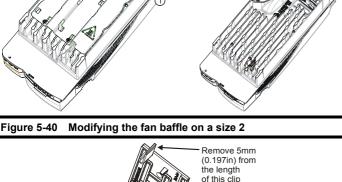
To avoid the risk of fire when the drive is surface mounted with the braking resistor installed, the back plate should be a non-flammable material.

The Digidrive SK size 2 has been designed with an optional spacesaving heatsink mounted resistor. The resistor can be installed within the heatsink fins of the drive. When the heatsink mounted resistor is used, an external thermal protection device is not required as the resistor is designed such that it will fail safely under fault conditions. The built-in software overload protection should be set-up to protect the resistor. The resistor is rated to IP54 and/or NEMA 12.

If the drive is to be through-panel mounted with the heatsink mounted brake resistor installed, then the aperture in the panel through which the drive is mounted must be modified as shown in Figure 5-38. This is in order to allow for the braking resistor cables and grommets.

Figure 5-38 Through-panel mounting cut out details for size 2




Resistor part number: 1220-2758-01 Each kit contains the following parts:

- A braking resistor assembly
- A through-panel grommet
- A wire clip
- An installation sheet

Size 2 Braking resistor fitting instructions

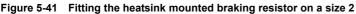
Figure 5-39 Removing the baffle plate on a size 2

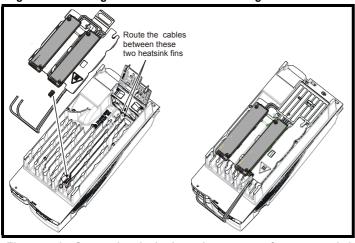
Remove 5mm (0.197in) from the length of the clip on the plastic fan baffle.

Remove the DC cover as detailed in Menu 3 in the Digidrive SK

Remove the 2 breakouts that line-up with the BR and +DC terminal connections as detailed in Menu 3 in the Digidrive SK size 2 to 6

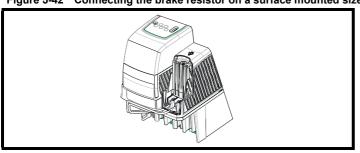
Lift the hinged baffle plate by pushing the plastic tabs in the direction shown (1). Push tab in the direction shown (2), and lift


Remove the baffle plate by removing the two screws. These two

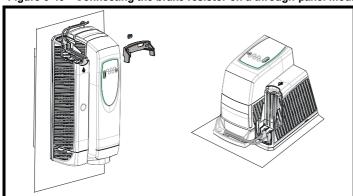

size 2 to 6 Getting Started Guide.

Getting Started Guide.

the baffle as shown (3).


screws are no longer required.

- Fit clip to heatsink in the position shown in diagram opposite. Route the long cables of the resistor assembly between the fins of the heatsink as shown in Figure 5-41.
- Fit the heatsink baffle plate in place with the cables routed underneath. Ensure the cables are not trapped between a heatsink fin and the baffle plate.
- Fit the braking resistors to the heatsink. The resistors are installed with captive screws.
- The screws should be tightened to a maximum torque of 2.0 N.m
- Close the hinged fan baffle.
- Fit cables to heatsink clip.


Figure 5-42 Connecting the brake resistor on a surface mounted size 2

- Fit the DC terminal cover grommets supplied in the accessory box with the drive, to the cables. To ensure a good seal, the grommets are a tight fit. Lubrication may be required to help fit the grommets to the cables.
- Terminate the cables with suitable crimps and connect to the BR and DC2 terminals.
- Replace the terminal cover.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

Figure 5-43 Connecting the brake resistor on a through-panel mounted size 2

- See Figure 5-38 for through-panel mounting cut-out details.
- Pass the cables through the hole in the panel and fit the hole grommet.
- Fit the mounting bracket.
- Fit the DC terminal cover grommets supplied in the accessory box with the drive, to the cables. To ensure a good seal, the grommets are a tight fit. Lubrication may be required to help fit the grommets to the cables
- Terminate the cables with suitable crimps and connect to the BR and DC2 terminals.
- Replace the terminal cover.

Braking resistor overload protection parameter settings Failure to observe the following information may damage the resistor.

The *Digidrive SK* software contains an overload protection function for a braking resistor. On *Digidrive SK* size 2 this function should be enabled to protect the heatsink mounted resistor. Below are the parameter settings.

Parameter	200V drive	400V drive		
Full power braking time	0.09 0.02			
Full power braking period	2.	0		

For more information on the braking resistor software overload protection, see the Digidrive SK Advanced User Guide.

If the heatsink mounted braking resistor is to be used at more than half of its average power rating then the drive's cooling fan must be set to full speed by setting Pr **6.45** to On (1).

Braking resistor: High temperatures and overload protection

Braking resistors can reach high temperatures. Locate braking resistors so that damage cannot result. Use cable having insulation capable of withstanding the high temperatures.

It is essential that the braking resistor be protected against overload caused by a failure of the brake control. Unless the resistor has built in protection, the circuit below should be used, where the thermal protection device disconnects the AC supply to the drive.

Figure 5-44 Typical protection circuit for a braking resistor

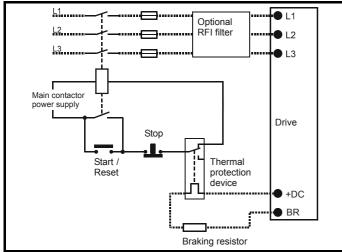


Table 5-11 Heatsink mounted braking resistor data

Parameter	Size 2
Part number	1220-2758-01
DC resistance at 25°C	37.5Ω
Peak instantaneous power over 1ms at nominal resistance	16kW
Average power over 60s*	100W
Ingress Protection (IP) rating	IP54
Maximum altitude	2000m

^{*} To keep the temperature of the resistor below 70°C (158°F) in a 30°C

(86°F) ambient, the average power rating is 100W for size 2. The previous parameter settings ensure this is the case.

Digidrive SK size 3 and larger do not have heatsink mounted braking resistors, hence the default values of Pr **10.30** and Pr **10.31** are 0 (i.e. software braking resistor overload protection disabled).

Braking resistor software overload protection

The Digidrive SK software contains an overload protection function for a braking resistor. In order to enable and set-up this function, it is necessary to enter two values into the drive:

- Resistor short-time overload time (Pr 10.30)
- Resistor minimum time between repeated short-time overloads (Pr 10.31)
 This data should be obtained from the manufacturer of the braking resistors.

Pr 10.39 gives an indication of braking resistor temperature based on a simple thermal model. Zero indicates the resistor is close to ambient and 100% is the maximum temperature the resistor can withstand. A br.rS alarm is given if this parameter is above 75% and the braking IGBT is active. An It.br trip will occur if Pr 10.39 reaches 100%, when Pr 10.37 is set to 0 (default value) or 1.

If Pr 10.37 is equal to 2 or 3 an It.br trip will not occur when Pr 10.39 reaches 100%, but instead the braking IGBT will be disabled until Pr 10.39 falls below 95%. This option is intended for applications with parallel-connected DC buses where there are several resistors, each of which cannot withstand full DC bus voltage continuously. With this type of application it is unlikely the braking energy will be shared equally between the resistors because of voltage measurement tolerances within the individual drives. Therefore with Pr 10.37 set to 2 or 3, then as soon as a resistor has reached its maximum temperature the drive will disable the braking IGBT, and another resistor on another drive will take up the braking energy. Once Pr 10.39 has fallen below 95% the drive will allow the braking IGBT to operate again.

See the *Digidrive SK Advanced User Guide* for more information on Pr **10.30**, Pr **10.31**, Pr **10.37** and Pr **10.39**.

This software overload protection should be used in addition to an external overload protection device.

5.3 Sizing a braking resistor

The size and rating of the resistor are calculated with respect to the energy to be absorbed, the rate at which the power is delivered and the time between successive decelerations.

Kinetic energy of the motor and the driven machine = 0.5 J ω^{2} Where:

$$\omega$$
 = angular velocity in radians s⁻¹

$$\omega = \frac{2\pi \times n}{60}$$

Where: n = motor speed in RPM

J = total moment of inertia (kg m²) of the motor and driven machine. If there is gearing between the motor and the machine, J is the value reflected at the motor shaft.

As energy is proportional to the square of the angular velocity, most of the energy is concentrated at the higher operating speeds. If the motor is operated above base speed, the power delivered to the resistor is constant until the speed falls below base speed.

Example

The information required to calculate the size of the braking resistor is as below:

Inertia J 2kg m²

Braking cycle 10 seconds in every 60

seconds

Motor nominal torque 26N.m

Motor rated speed n 1450RPM

Braking transistor operating voltage V 780VDC

The first stage is to determine the maximum braking torque (M) available.

M = 150% x nominal motor torque

 $= 1.5 \times 26$

= 39N.m

Now calculate the minimum deceleration time possible to ensure that the time required is within specification.

$$\mathbf{M} = \mathbf{J} \times \boldsymbol{\alpha}$$

Where:

 α = angular acceleration (rad / s²)

J = moment of inertia (kg m²)

 $\alpha = \frac{\omega}{\mathbf{t_b}}$

 $= \mathbf{J} \times \frac{\omega}{\mathbf{t_h}}$

Where:

 ω = angular velocity (rad / s)

t _b= minimum deceleration time (s)

 $\omega = \frac{2 \times \pi \times n}{60}$

n = motor speed RPM

$$= \frac{\mathbf{J} \times \mathbf{\pi} \times \mathbf{n}}{\mathbf{30} \times \mathbf{t_h}}$$

$$= \frac{2 \times \pi \times 1450}{30 \times t_b}$$

$$39 = \frac{2 \times \pi \times 1450}{30 \times t_h}$$

$$t_b = \frac{2 \times \pi \times 1450}{30 \times 39}$$

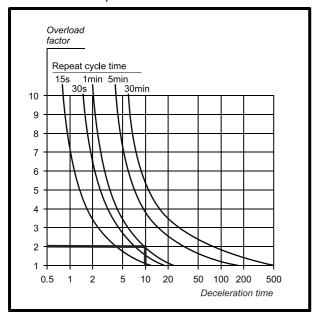
$$t_h = 7.8$$
 seconds

The minimum time for deceleration is 7.8 seconds. The required deceleration time is 10 seconds and is therefore within the specification for the drive

Now using the required deceleration time of 10 seconds, calculate the required braking torque:

$$M_b = \frac{2 \times \pi \times 1450}{30 \times 10}$$

$$M_b = 30,4Nm$$


Now calculate the braking power:

$$P_b = \frac{M_b \times \pi \times n}{30 \times 10^3}$$

$$= \frac{30.4 \times \pi \times 1450}{30 \times 10^3}$$

Since braking occurs intermittently, the resistor can be rated for intermittent rather than continuous power dissipation so that the overload factor of the resistor can be used. This factor can be obtained from the cooling curves for resistor type that is being used. See the following example:

Figure 5-45 Examples cooling curves for power resistors (in practice, refer to the cooling curves for the resistor to be used)

The cooling curve indicates that for a braking time of 10 seconds and a repeat cycle time of 60 seconds, the overall factor (F) is 2.0.

Calculate the required power rating of the resistor:

$$P_R = \frac{P_b}{F} = \frac{4.6 \times 10^3}{2.0} = 2.3 \text{kW}$$

Now calculate the value of the braking resistor:

$$R_{\text{max}} = \frac{(VR)^2}{P_b} = \frac{780^2}{4,6 \times 10^3} = 132\Omega$$

For this example use 120Ω which is the nearest value in the E12 range of resistors.

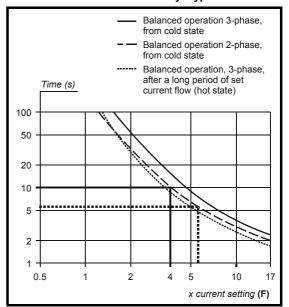
In practice, use a resistor having a preferred value close to and lower than the calculated value. This is because the calculated value would cause the braking transistor to be switched on almost continuously during braking. In this case, the drive will not have full control of the DC bus voltage. A lower value of braking resistor will cause the braking transistor to act as a chopper which will then allow the drive to control the DC bus voltage more accurately.

This reduction in value does not increase the power dissipation since the average voltage across the resistor is reduced by the braking transistor operating as a chopper.

5.3.1 Sizing an appropriate thermal overload relay

Calculate the maximum permissible continuous current through the braking resistor as follows:

$$I_{Rmax} = \sqrt{\frac{P_R}{R}} = \sqrt{\frac{2,3 \times 10^3}{120}} = 4,4A$$


Where:

P_R is the power rating of the resistor to be used.

R is the actual value of the braking resistor (not the calculated).

Use the tripping curves for the chosen manufacturer of thermal overload relay in order to find the overload factor (F) that will cause the relay to trip after 10 seconds.

Figure 5-46 Example tripping curves for the Telemecanique thermal overload relays type LR-Dx3xx

Calculate the current setting required for the thermal overload relay as follows:

$$I_{SET} = \frac{I_{Rmax}}{F} = \frac{4,4}{4} = 1,1A$$

Select a model of thermal overload relay that can be set at 1.1A (e.g. Telemecanique LR2-D1306).

Calculate the maximum current that could flow through the resistor (e.g. due to the braking transistor becoming short circuit) as follows:

$$I_{Rpk} = \frac{V_R}{R} = \frac{780}{120} = 6.5A$$

Calculate the overload factor for this condition as follows:

$$F_{S/C} = \frac{I_{Rpk}}{I_{SFT}} = \frac{6.5}{1.1} = 5.9$$

Use the tripping curves to find the time that the thermal overload relay will take to trip (e.g. 5 seconds approximately).

Check that the braking resistor can tolerate the overload current for this duration.

NOTE

Braking resistors must be installed equipped with a thermal overload device

Resistors intended for braking duty should be capable of tolerating thermal shock. 'Pulse rated' resistors are recommended.

The resistance value calculated above does not take into account any tolerance in the resistance value.

The power ratings above are at the limit of satisfactory operation and thus a 10% safety factor should be built in to ensure any tolerances do not add up to cause overvoltage trips. This could be critical where inaccurate values are used for inertia etc. This safety factor should be increased where necessary to incorporate any sort of inaccuracy in values used

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

5.3.2 Routine maintenance

The drive should be installed in a cool, clean, well ventilated location. Contact of moisture and dust with the drive should be prevented.

Regular checks of the following should be carried out to ensure drive / installation reliability are maximized:

Environment	
Ambient temperature	Ensure the enclosure temperature remains at or below maximum specified
Dust	Ensure the drive remains dust free – check that the heatsink and drive fan are not gathering dust. The lifetime of the fan is reduced in dusty environments.
Moisture	Ensure the drive enclosure shows no signs of condensation
Enclosure	
Enclosure door filters	Ensure filters are not blocked and that air is free to flow
Electrical	
Screw connections	Ensure all screw terminals remain tight
Crimp terminals	Ensure all crimp terminals remains tight – check for any discoloration which could indicate overheating
Cables	Check all cables for signs of damage

5.3.3 Heatsink fan

Heatsink fan operation

The Digidrive SK is ventilated by an internal heatsink mounted fan. The fan housing forms a baffle plate, channelling the air through the heatsink chamber. Thus, regardless of the mounting method (surface or throughpanel mounting), the fitting of additional baffle plates is not required.

Ensure the minimum clearances around the drive are maintained to allow air to flow freely.

The heatsink fan on Digidrive SK size D and 2 is a dual speed fan and on size 3 to 6, it is a variable speed fan. The drive controls the speed at which the fan runs based on the temperature of the heatsink and the drive's thermal model system. The Digidrive SK size 3 to 6 is also installed with a single speed fan to ventilate the capacitor bank.

The heatsink fan on the Digidrive SK size 2 to 5 is supplied internally by the drive. The heatsink fan on the size 6 requires an external +24Vdc power supply.

Heatsink fan supply

The heatsink fan on size 6 requires an external +24Vdc supply. The connections for the heatsink fan supply must be made to the upper terminal connector near to the W phase output on the drive. See Figure 5-47 for the position of the heatsink fan supply connector.

Figure 5-47 Location of size 6 heatsink fan supply connections

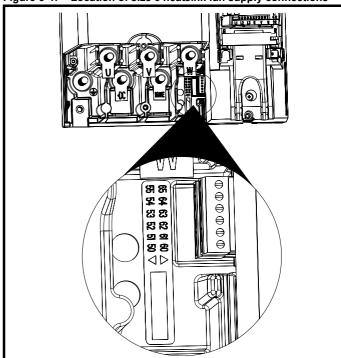
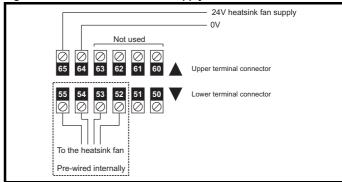



Figure 5-48 Size 6 heatsink fan supply connections

The heatsink fan supply requirements are as follows:

Nominal voltage: 24Vdc Minimum voltage: 23.5Vdc Maximum voltage: 27Vdc Current drawn: 3.3A

Recommended power supply: 24V, 100W, 4.5A

Recommended fuse: 4A fast blow (I²t less than 20A²s)

Technical	Derating curves	Drive voltage	DC bus	Mechanical		AC line	Motor cable	General	I/O	Supply	
roominoar	Dorating our voo	Dilivo voltago	20 200		EMC	710 11110		Contolai	" U	Cuppiy	Options
data	and losses	levels	design	installation	LIVIC	reactors	lenaths	data	specification	types	Options
aata	and looded	10 4 010	accigii	motanation		1000000	iongino	aata	opcomodion	ty poo	

Figure 5-49 Removal of Digidrive SK size 6 fan (part 1)

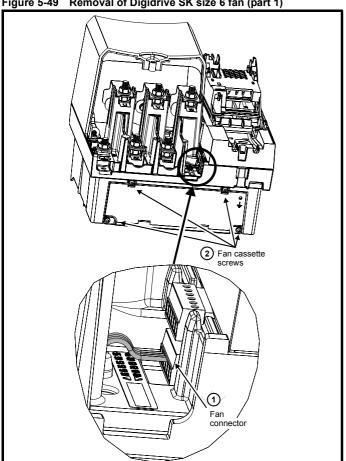
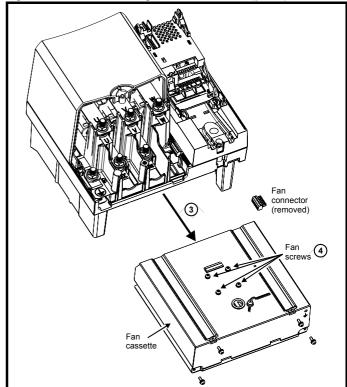
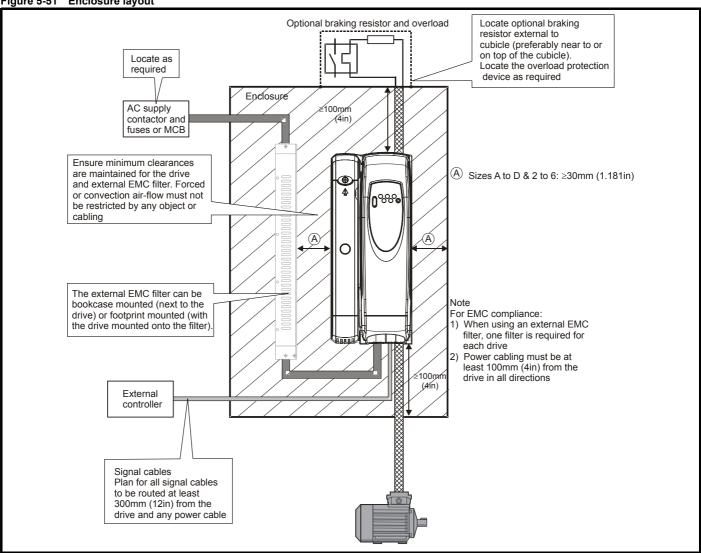



Figure 5-50 Removal of Digidrive SK size 6 fan (part 2)

The fan assembly part number for Digidrive SK size 6 is 9701-0019.


Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Options
data	and losses	levels	design	installation	LIVIC	reactors	lengths	data	specification	types	Options

5.3.4 Enclosure

Enclosure layout (size A to D and 2 to 6)

Please observe the clearances in the diagram below taking into account any appropriate notes for other devices / auxiliary equipment when planning the installation.

Figure 5-51 Enclosure layout

Enclosure sizing

- Add the dissipation figures from section 2.5.2 Drive losses on page 32 for each drive that is to be installed in the enclosure.
- If an external EMC filter is to be used with each drive, add the dissipation figures from Table 6-9 on page 88 for each external EMC filter that is to be installed in the enclosure.
- If the braking resistor is to be mounted inside the enclosure, add the average power figures for each braking resistor that is to be installed in the enclosure.
- 4. Calculate the total heat dissipation (in Watts) of any other equipment to be installed in the enclosure.
- Add the heat dissipation figures obtained above. This gives a figure in Watts for the total heat that will be dissipated inside the enclosure.

Calculating the size of a sealed enclosure

The enclosure transfers internally generated heat into the surrounding air by natural convection (or external forced air flow); the greater the surface area of the enclosure walls, the better is the dissipation capability. Only the surfaces of the enclosure that are unobstructed (not in contact with a wall or floor) can dissipate heat.

Calculate the minimum required unobstructed surface area $\mathbf{A}_{\mathbf{e}}$ for the enclosure from:

$$A_e = \frac{P}{k(T_{int} - T_{ext})}$$

Where:

 A_e Unobstructed surface area in m² (1 m² = 10.9 ft²)

T_{ext} Maximum expected temperature in ^oC *outside* the enclosure

T_{int} Maximum permissible temperature in ^oC *inside* the enclosure

P Power in Watts dissipated by all heat sources in the enclosure

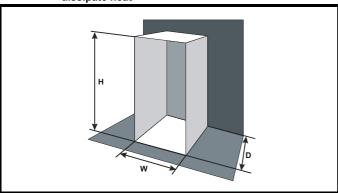
k Heat transmission coefficient of the enclosure material in W/m²/°C

Example

To calculate the size of an enclosure for the following:

- Two SK2203 models operating at the Normal Duty rating
- Each drive operate at 6kHz PWM switching frequency
- Schaffner 32A (4200-6210) external EMC filter for each drive
- · Braking resistors are to be mounted outside the enclosure
- Maximum ambient temperature inside the enclosure: 40°C
- Maximum ambient temperature outside the enclosure: 30°C

1	Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
	data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options


Losses in each drive: 302W (see section 2.5.2 *Drive losses* on page 32). Losses of each external EMC filter: 11W (max) (see section 6.5 *Digidrive SK size 2 to 6* on page 87).

Total losses: 2 x (302 + 11) = 626W

The enclosure is to be made from painted 2 mm (0.079 in) sheet steel having a heat transmission coefficient of 5.5 $W/m^2/^{\circ}C$. Only the top, front, and two sides of the enclosure are free to dissipate heat.

The value of 5.5 W/m²/°C can generally be used with a sheet steel enclosure (exact values can be obtained by the supplier of the material). If in any doubt, allow for a greater margin in the temperature rise.

Figure 5-52 Enclosure having front, sides and top panels free to dissipate heat

Insert the following values:

T_{int} 40°C T_{ext} 30°C k 5.5 P 626 W

The minimum required heat conducting area is then:

$$A_e = \frac{626}{5,5(40-30)}$$

=11.38 m² (124 ft²) (1 m² = 10.9 ft²)

Estimate two of the enclosure dimensions - the height (H) and depth (D), for instance. Calculate the width (W) from:

$$W = \frac{A_e - 2HD}{H + D}$$

Inserting $\mathbf{H} = 2m$ and $\mathbf{D} = 0.6m$, obtain the minimum width:

$$W = \frac{11,38 - (2 \times 2 \times 0.6)}{2 + 0.6}$$
=3.454 m (136 in)

If the enclosure is too large for the space available, it can be made smaller only by attending to one or all of the following:

- Using a lower PWM switching frequency to reduce the dissipation in the drives
- Reducing the ambient temperature outside the enclosure, and/or applying forced-air cooling to the outside of the enclosure
- · Reducing the number of drives in the enclosure
- · Removing other heat-generating equipment

Calculating the air-flow in a ventilated enclosure

The dimensions of the enclosure are required only for accommodating the equipment. The equipment is cooled by the forced air flow.

Calculate the minimum required volume of ventilating air from:

$$V = \frac{3kP}{T_{int} - T_{ext}}$$

Where:

V Air-flow in m³ per hour (1 m³/hr = 0.59 ft³/min)

T_{ext} Maximum expected temperature in °C *outside* the enclosure

T_{int} Maximum permissible temperature in °C *inside* the enclosure

P Power in Watts dissipated by *all* heat sources in the

k Ratio of $\frac{P_o}{P_I}$

Where:

Po is the air pressure at sea level

P_I is the air pressure at the installation

Typically use a factor of 1.2 to 1.3, to allow also for pressure-drops in dirty air-filters.

Example

To calculate the size of an enclosure for the following:

- Three SK3201 models operating at the Normal Duty rating
- Each drive to operate at 6kHz PWM switching frequency
- Schaffner 75A (4200-6307) external EMC filter for each drive
- Braking resistors are to be mounted outside the enclosure
- Maximum ambient temperature inside the enclosure: 40°C

Maximum ambient temperature outside the enclosure: 30°C

Losses of each external EMC filter: 29W (max)

Total losses: 3 x (380 + 29) = 1227W

Insert the following values:

Losses in each drive: 380W

T_{int} 40°C T_{ext} 30°C k 1.3 P 1227 W

Then:

$$V = \frac{3 \times 1, 3 \times 1227}{40 - 30}$$

= 478.5 m^3/hr (282.3 ft^3/min) (1 m^3/hr = 0.59 ft^3/min)

Technical Derating curves Drive voltage DC bus AC line Motor cable I/O Mechanica General Supply **EMC** Options and losses design installation reactors lengths specification types data levels data

Enclosure design and drive ambient 5.3.5 temperature

Drive derating is required for operation in high ambient temperatures Totally enclosing or through panel mounting the drive in either a sealed cabinet (no airflow) or in a well ventilated cabinet makes a significant difference on drive cooling.

The chosen method affects the ambient temperature value (T_{rate}) which should be used for any necessary derating to ensure sufficient cooling for the whole of the drive.

The ambient temperature for the four different combinations is defined below:

- 1. Totally enclosed with no air flow (<2 m/s) over the drive $T_{rate} = T_{int} + 5^{\circ}C$
- 2. Totally enclosed with air flow (>2 m/s) over the drive $T_{rate} = T_{int}$
- 3. Through panel mounted with no airflow (<2 m/s) over the drive T_{rate} = the greater of T_{ext} +5°C, or T_{int}
- 4. Through panel mounted with air flow (>2 m/s) over the drive T_{rate} = the greater of T_{ext} or T_{int}

Where:

 T_{ext} = Temperature outside the cabinet

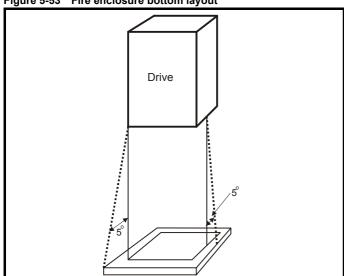
T_{int} = Temperature inside the cabinet

T_{rate} = Temperature used to select current rating from tables in Chapter 2 Derating curves and losses.

Fire enclosure

When the drive conforms to UL type 1, the UL508C listed type 1 drives meet the US fire enclosure requirements.

For installation in the USA, a NEMA 12 enclosure is suitable.


For installation outside the USA, the following (based on IEC 62109-1, standard for PV inverters) is recommended.

Enclosure can be metal and/or polymeric, polymer must meet requirements which can be summarized for larger enclosures as using materials meeting at least UL 94 class 5VB at the point of minimum thickness.

Air filter assemblies to be at least class V-2.

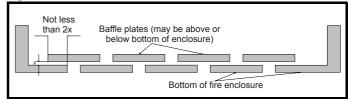

The location and size of the bottom shall cover the area shown in Figure 5-53. Any part of the side which is within the area traced out by the 5° angle is also considered to be part of the bottom of the fire enclosure.

Figure 5-53 Fire enclosure bottom layout

The bottom, including the part of the side considered to be part of the bottom, must be designed to prevent escape of burning material - either by having no openings or by having a baffle construction. This means that openings for cables etc. must be sealed with materials meeting the 5VB requirement, or else have a baffle above. See Figure 5-54 for acceptable baffle construction. This does not apply for mounting in an enclosed electrical operating area (restricted access) with concrete floor.

Figure 5-54 Fire enclosure baffle construction

Technical Derating curves Drive voltage DC bus Mechanical AC line Motor cable General I/O Supply **EMC** Options data and losses design installation reactors lengths data specification types levels

6 EMC

6.1 Ground leakage

The ground leakage current depends upon the internal EMC filter being installed. The drive is supplied with the filter installed. Instructions for removal of the internal EMC filter are given in section 6.2 *Internal EMC filter* on page 79.

With internal EMC filter installed

Size A

1 phase 110V product

4mA AC at 110V, 50Hz (proportional to supply voltage and frequency)

1 phase 200V product

10mA AC at 230V, 50Hz (proportional to supply voltage and frequency)

Size B

1 phase 110V product

10mA AC at 110V, 50Hz (proportional to supply voltage and frequency)

Size B and C

1 phase 200V product

20mA AC at 230V, 50Hz (proportional to supply voltage and frequency)

3-phase 200V product

7mA AC at 230V, 50Hz (proportional to supply voltage and frequency)

3-phase 400V product

8.2mA AC at 415V, 50Hz (proportional to supply voltage and frequency)

Size D

1 phase 200V product

20.5mA AC at 230V, 50Hz (proportional to supply voltage and frequency) $\,$

3-phase 200V product

8mA AC at 230V, 50Hz (proportional to supply voltage and frequency)

3-phase 400V product

10.5mA AC at 415V, 50Hz (proportional to supply voltage and frequency)

Size 2 and 3

28mA AC at 400V, 50Hz (proportional to supply voltage and frequency)

 $30\mu A$ DC with a 600V DC bus ($10M\Omega$)

Size 4 to 6

56mA AC at 400V, 50Hz (proportional to supply voltage and frequency)

18μA DC with a 600V DC bus (33M Ω)

NOTE

The above leakage currents are just the leakage currents of the drive with the internal EMC filter connected and do not take into account any leakage currents of the motor or motor cable.

With internal EMC filter removed

<1mA

NOTE

In both cases, there is an internal voltage surge suppression device connected to ground. Under normal circumstances, this carries negligible current.

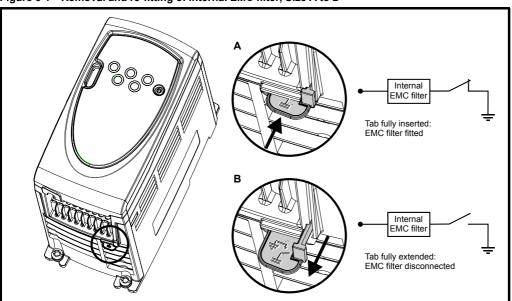
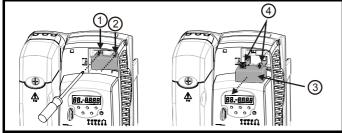
When the internal EMC filter is installed, the leakage current is high. In this case, a permanent fixed ground connection must be provided using two independent conductors each with a cross-section equal to or exceeding that of the supply conductors. The drive is provided with two ground terminals to facilitate this. The purpose is to prevent a safety hazard occurring if the connection is lost.

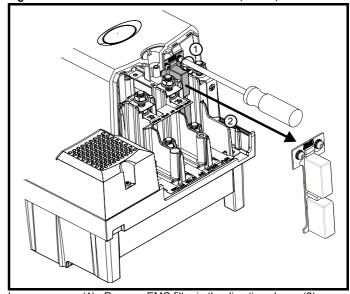
Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	LIVIC	reactors	lengths	data	specification	types	Options

6.2 Internal EMC filter

It is recommended that the internal EMC filter be kept in place unless there is a specific reason for removing it.

Figure 6-1 Removal and re-fitting of internal EMC filter, Size A to D


Figure 6-2 Removal of the internal EMC filter, size 2 and 3

Loosen/remove screws as shown (1) and (2).

Remove filter (3) and ensure the screws are replaced and re-tightened (4).

Figure 6-3 Removal of the internal EMC filter, size 4, 5 and 6

Loosen screws (1). Remove EMC filter in the direction shown (2).

The internal EMC filter reduces radio-frequency emissions into the mains supply. Where the motor cable length is short, it permits the requirements of EN 61800-3:2004 to be met for the second environment. For longer motor cables, the filter continues to provide a useful reduction in emission level, and when used with any length of shielded motor cable up to the limit for the drive, it is unlikely that nearby industrial equipment will be disturbed. It is recommended that the filter be used in all applications unless the instructions given above require it to be removed or the ground leakage current of 28mA is unacceptable.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Options
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

6.3 Electromagnetic compatibility (EMC)

This is a summary of the EMC performance of the drive.

Table 6-1 Immunity compliance

Standard	Type of immunity	Test specification	Application	Level
IEC61000-4-2 EN61000-4-2	Electrostatic discharge	6kV contact discharge 8kV air discharge	Module enclosure	Level 3 (industrial)
IEC61000-4-3 EN61000-4-3	Radio frequency radiated field	10V/m prior to modulation 80 - 1000MHz 80% AM (1kHz) modulation	Module enclosure	Level 3 (industrial)
IEC61000-4-4	Fast transient burst	5/50ns 2kV transient at 5kHz repetition frequency via coupling clamp	Control lines	Level 4 (industrial harsh)
EN61000-4-4	rasi ilansieni buisi	5/50ns 2kV transient at 5kHz repetition frequency by direct injection	Power lines	Level 3 (industrial)
		Common mode 4kV 1.2/50μs waveshape	AC supply lines: line to ground	Level 4
IEC61000-4-5 EN61000-4-5	Surges	Differential mode 2kV 1.2/50μs waveshape	AC supply lines: line to line	Level 3
		Lines to ground	Signal ports to ground ¹	Level 2
IEC61000-4-6 EN61000-4-6	Conducted radio frequency	10V prior to modulation 0.15 - 80MHz 80% AM (1kHz) modulation	Control and power lines	Level 3 (industrial)
IEC61000-4-11 EN61000-4-11	Voltage dips and interruptions	-30% 10ms +60% 100ms -60% 1s <-95% 5s	AC power ports	
EN 61000-6-1:2007 light - industrial environme		d for the residential, commercial and		Complies
EN50082-2 IEC61000-6-2 EN 61000-6-2:2005	Generic immunity standard	d for the industrial environment		Complies
EN 61800-3:2004 IEC61800-3	Product standard for adjust (immunity requirements)	stable speed power drive systems	Meets immunity requirem second environments	ents for first and

¹ See section *Surge immunity of control circuits - long cables and connections outside a building* on page 97 for control ports for possible requirements regarding grounding and external surge protection

Emission

The drive contains an in-built filter for basic emission control. An additional optional external filter provides further reduction of emission. The requirements of the standards are met, depending on the motor cable length and switching frequency.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

6.4 Digidrive SK size A to D

EMC filters are available as optional extra parts where required.

Table 6-2 EMC filter data

Use	ed with	Number of	Filter part number	Filte	er type	Moun	ting	Max motor cable length
LS	СТ	phases	Schaffner	Standard	Low leakage	Footprint	Side	(m)
SK 0.5 ML, SK 1 ML,	SKA1100025, SKA1100037,	1	FS6512-12-07	Y		Y	Υ	50
SK 0.5 M and SK 1 M	SKA1200025 and SKA1200037		FS6512-12-07-LL		Y	Y	Υ	30
SK 1.2 M and	SKA1200055 and	1	FS6512-12-07	Y		Y	Υ	75
SK 1.5 M	SKA1200075	'	FS6512-12-07-LL		Y	Y	Υ	30
SK 1.5 ML and SK 2 ML	SKB1100075 and SKB1100110	1	FS6513-27-07	Υ		Y	Υ	100
SK 2 M/TL and	SKBD200110 and	1	FS6513-20-07	Y		Y	Υ	100
SK 2.5 M/TL	SKBD200150	'	FS6513-20-07-LL		Y	Y	Υ	75
SK 2 M/TL and	SKBD200110 and	3	FS6513-10-07	Y		Y	Y	100
SK 2.5 M/TL	SKBD200150	3	FS6513-10-07-LL		Y	Y	Υ	15
SK 1 T to	SKB3400037 to	3	FS6513-10-07	Y		Y	Υ	100
SK 2.5 T	SKB3400150	3	FS6513-10-07-LL		Y	Y	Y	15
SK 3.5 M/TL	SKCD200220	1	FS6514-24-07	Y		Y	Υ	100
3K 3.3 W/ 1L	SKCD200220	'	FS6514-24-07-LL		Y	Y	Y	10
SK 3.5 M/TL	SKCD200220	3	FS6514-14-07	Y		Y	Y	100
3K 3.3 W/ 1L	SKCD200220	3	FS6514-14-07-LL		Y	Y	Y	50
SK 3.5 T to	SKC3400220 to	3	FS6514-14-07	Y		Y	Υ	100
SK 5.5 T	SKC3400400	3	FS6514-14-07-LL		Y	Y	Υ	20
SK 4.5 M/TL	SKDD200300	1	FS6515-24-07	Y		Y	Υ	100
3K 4.5 W/ TL	3KDD200300	'	FS6515-24-07-LL		Y	Y	Υ	10
SK 4.5 M/TL	SKDD200300	3	FS6515-16-07	Υ		Y	Υ	100
OK 7.5 W/ IL			FS6515-16-07-LL		Y	Y	Y	10
SK 5 TL, SK 7 T and	SKD3200400, SKD3400550 and	3	FS6515-16-07	Υ		Y	Υ	100
SK 10 T	SKD3400750		FS6515-16-07-LL		Y	Y	Υ	10

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

Table 6-3 EMC filter ratings

Use	ed with	Number of phases	Filter part number	Power losses at rated current	IP rating	Wei	ight	Operational leakage current	Worst case leakage current	tern tight	lter ninal ening que	Filter current rating
LS	СТ		Schaffner	W		kg	lb	mA	mA	N.m	lb ft	Α
SK 0.5 ML, SK 1 ML,	SKA1100025, SKA1100037,	1	FS6512-12-07	4.1		0.42	0.9	25.7	49.5	0.8	0.6	12
SK 0.5 M and SK 1 M	SKA1200025 and SKA1200037	'	FS6512-12-07-LL	6.7		0.44	1.0	2.5	5	0.8	0.6	12
SK 1.5 ML and SK 2 ML	SKB1100075 and SKB1100110	1	FS6513-27-07	7.2		0.68	1.5	24.9	48.2	0.8	0.6	27
SK 2 M/TL and	SKBD200110 and	1	FS6513-20-07	11.2		0.57	1.3	25.7	50	0.8	0.6	20
SK 2.5 M/TL	SKBD200150	'	FS6513-20-07-LL	12.8	1	0.64	1.4	3.6	7	0.8	0.6	20
SK 2 M/TL and	SKBD200110 and	3	FS6513-10-07	7.5	1	0.63	1.4	40	137.2	0.8	0.6	10
SK 2.5 M/TL	SKBD200150	3	FS6513-10-07-LL	7.5		0.63	1.4	3	18.3	0.8	0.6	10
SK 1 T to	SKB3400037 to	3	FS6513-10-07	7.5		0.63	1.4	40	137.2	0.8	0.6	10
SK 2.5 T	SKB3400150	3	FS6513-10-07-LL	7.5	1	0.63	1.4	3	18.3	0.8	0.6	10
SK 3.5 M/TL	SKCD200220	1	FS6514-24-07	16.2	20	0.84	1.9	25.7	50	0.8	0.6	24
3K 3.5 W/ TL	3KCD200220	'	FS6514-24-07-LL	18.5	1	0.91	2.0	3.6	7	0.8	0.6	24
SK 3.5 M/TL	SKCD200220	3	FS6514-14-07	11.8	1	0.75	1.7	40	137.2	0.8	0.6	14
3K 3.5 W/ IL	SKCD200220	3	FS6514-14-07-LL	11.8	1	0.74	1.6	3	18.3	0.8	0.6	14
SK 3.5 T to	SKC3400220 to	3	FS6514-14-07	11.8		0.75	1.7	40	137.2	0.8	0.6	14
SK 5.5 T	SKC3400400	3	FS6514-14-07-LL	11.8	1	0.74	1.6	3	18.3	0.8	0.6	14
SK 4.5 M/TL	SKDD200300	1	FS6515-24-07	13.8		1.65	3.6	14.3	28.4			24
3K 4.5 W/TL	3KDD200300	'	FS6515-24-07-LL	11.52	1	1.05	3.0	2.3	4.62			24
SK 4.5 M/TL	SKDD200300	3	FS6515-16-07	11.52				40	137.2			
3N 4.0 IVI/ I L	31100200300	3	FS6515-16-07-LL	17.28	-			3	18.3	1.2	0.9	
SK 5 TL,	SKD3200400,		FS6515-16-07	11.52		1.55	3.4	40	137.2			16
SK 7 T and SK 10 T	SKD3400550 and SKD3400750	3	FS6515-16-07-LL	17.28				3	18.3			

1	Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
	data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

6.4.1 Conformity Table 6-4 Conformity size A to B

LS SK 0.5 ML and	d with	Number	Motor cable							hing free					
SK 0.5 ML and		of phases	length		Inte	rnal			Stan	dard			Low le	eakage	
	СТ	or priuses	(m)	3kHz	6kHz	12kHz	18kHz	3kHz	6kHz	12kHz	18kHz	3kHz	6kHz	12kHz	18kHz
	SKA1100025 and	1	20		E2			R	I	ı	I				
SK 1 ML	SKA1100037		50		E2			I	I	I	I				
			5	E2	:U	E2	PR	R				R		ı	
SK 0 E M and	SKA1200025 and		10	E2U		E2R		R		ı		R		ı	
SK 1 M	SKA1200025 and SKA1200037	1	20			2R		R		ı				I	
			30			2R				l		I			
			50			2R				I					
			5	E2	:U	E2	?R	R		ı		R		ı	
			10	E2U		E2R		R		I		R		I	
	SKA1200055 and	1	20			2R		R		I				I	
SK 1.5 M	SKA1200075		30		E2					l		I			
			50			2R				l					
			75		E2				I		E2U				
			4	E2		E2	!R			3					
			10			2R				₹					
	SKB1100075 and	1	20			2R			R		I				
SK 2 ML	SKB1100110		50		E2					l					
			75		E2					I					
			100		E2					l					
			4	E2		E2	!R			₹				₹	
			10		E2			R		1				₹	
	SKBD200110 and	1	40		E2					<u> </u>				I	
SK 2.5 M/TL	SKBD200150	,	50		E2					l			- 1		
		,	75		E2					ı		1			
			100		E2	?R						_			
			2		E2U		E2R			₹		R		<u> </u>	
		,	4	E2U		E2R				۲		R		<u>!</u>	
		,	5			2R				₹		R		!	
SK 2 M/TL and SK 2.5 M/TL	SKBD200110 and SKBD200150	3	9			2R			۲			R		ı	
3K 2.5 W/TE	3KBD200130		15		E2				₹		l				
			50 75		E2			R		<u> </u>					
					E2	2R				l					
			100		E2U	:K			l R			D			
			5	E2		E2R			R			R R		l I	
			9	E2		E2R E2R			<u> </u>	1		R		I I	
SK 1 T to	SKB3400037 to	3	9 15	EZ	E2R	EZK			₹	 		ĸ			
SK 2.5 T	SKB3400150	3	50		E2R E2R			R	`	<u> </u>			1		
			75		E2R E2R			ĸ	1	1					
			100		E2R E2R				1						

1	Technical	Derating curves	Drive voltage	DC bus	Mechanical		AC line	Motor cable	General	I/O	Supply	
	data	and losses	levels	design	installation	EMC	reactors	lengths		specification		Options

Table 6-5 Conformity size C

llee	ما در ام	Number	Motor cable					Filter a	and swite	ching fred	quency				
Use	d with	of	length		Inte	rnal			Star	ndard			Low le	eakage	
LS	СТ	phases	(m)	3kHz	6kHz	12kHz	18kHz	3kHz	6kHz	12kHz	18kHz	3kHz	6kHz	12kHz	18kHz
			7	E2	2U	E:	2R			R		R	I		
			9	E2U		E2R				R		R	I		
SK 3.5 M/TL	SKCD200220	1	10			2R				R		R	I		
O14 0.0 14# 12	CROBLOGEE		15			2R				R					
			20			2R		RI			I				
			100		E2R E2U E2R		I								
			4	E2U E2R E2R		R						I			
			5	E2	2U	E2	2R			R				I	
			10			2R				R				I	
SK 3.5 M/TL	SKCD200220	3	20			2R				R			- 1		
			50			2R		ı	₹		I	I			
			75			2R				I					
			100			2R		I	I						
			4		2U	E2R			R				I		
			5	E2U		2R			R				ı		
SK 3.5 T to	SKC3400220 to		10		E2R				R						
SK 5.5 T	SKC3400400	3	20	E2R		R			I						
			50	E2R		I									
			75		E2R			ı							
			100		E2R			ı							

Table 6-6 Conformity size D

He	ed with	Number	Motor cable				Filter and	switching	frequency			
US	eu witti	of	length	Internal wi	th external	ferrite ring*		Standard		I	_ow leakage	9
LS	СТ	phases	(m)	3kHz	6kHz	12kHz	3kHz	6kHz	12kHz	3kHz	6kHz	12kHz
			10					R			R	
SK 4.5 M/TL	CKDD300300	_	20					R				
SK 4.5 W/ IL	SKDD200300	1	50									
			100				I					
			10					R			R	
SK 4.5 M/TL	CKDD300300	3	20					R				
SK 4.5 W/ IL	SKDD200300	3	50					ı				
			100					I				
			8	E2U	Е	2R	R				R	
SK 5 TL,	SKD3200400,		10	E2R		R				R		
	SKD3400550 and	3	20	E2R		R		I				
SK 10 T	SKD3400750		50	E2R		1						
			100	E2R			1		-			

^{*}Ferrite ring is supplied with the drive.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

Key to Conformity

The requirements are listed in descending order of severity, so that if a particular requirement is met then all requirements listed after it are also met.

	Standard	Description	Frequency range	Limits	Application				
		Generic emission standard for the	0.15 - 0.5MHz limits decrease linearly with log frequency	66-56dBμV quasi peak 56-46dBμV average	AC supply				
R	EN 61000-6-3:2007	residential commercial and light - industrial	0.5 - 5MHz	56dBμV quasi peak 46dBμV average	lines				
K		environment	5 - 30MHz	60dBμV quasi peak 50dBμV average					
	EN 61800-3:2004 IEC 61800-3	Product standard for adjustable speed power drive systems	Requirements for the	e first environment ¹ , with distribution	unrestricted				
	EN 61000-6-4:2007	Generic emission standard for the	0.15 - 0.5MHz	79dBμV quasi peak 66dBμV average	AC supply				
ı	EN 61000-6-4.2007	industrial environment	0.5 -30MHz	lines					
	EN 61800-3:2004 IEC 61800-3	Product standard for adjustable speed power drive systems	Requirements for t	the first environment ¹ with distribution ²	restricted				
E2U	EN 61800-3:2004 IEC 61800-3	Product standard for adjustable speed power drive systems	Requirements for the	second environment with distribution	unrestricted				
E2R	EN 61800-3:2004 IEC 61800-3	Product standard for adjustable speed power drive systems	Requirements for th	e second environment wi distribution ²	th restricted				
		· · · · · · · · · · · · · · · · · · ·	is condition is not recom						
1		nment is one where the lo							
2	When distribution is restricted, drives are available only to installers with EMC competence								

This caution applies where the drive is used in the first environment according to EN 61800-3:2004.

This is a product of the restricted distribution class according to IEC 61800-3. In a residential environment this product may cause radio interference in which case the user may be required to take adequate measures.

NOTE

Where the drive is incorporated into a system with rated input current exceeding 100A, the higher emission limits of EN 61800-3:2004 for the second environment are applicable, and no filter is then required.

NOTE

Operation without an external filter is a practical cost-effective possibility in an industrial installation where existing levels of electrical noise are likely to be high, and any electronic equipment in operation has been designed for such an environment. This is in accordance with EN 61800-3:2004 in the second environment, with restricted distribution. There is some risk of disturbance to other equipment, and in this case the user and supplier of the drive system must jointly take responsibility for correcting any problem which occurs.

For the size D only to meet the requirements in the second environment when using the internal EMC filter, the motor cables (U, V and W) need to be fed twice through a ferrite ring (supplied with the drive).

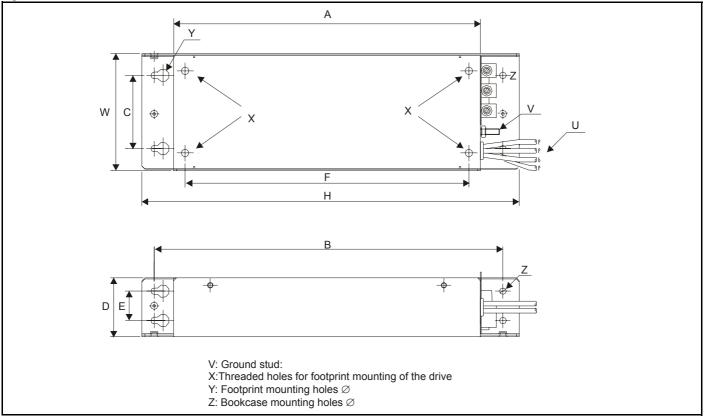
IEC 61800-3:2004 and EN 61800-3:2004

The 2004 revision of the standard uses different terminology to align the requirements of the standard better with the EC EMC Directive.

Power drive systems are categorized C1 to C4:

Category	Definition	Corresponding code used above
C1	Intended for use in the first or second environments	R
C2	Not a plug-in or movable device, and intended for use in the first environment only when installed by a professional, or in the second environment	ı
C3	Intended for use in the second environment, not the first environment	E2U
C4	Rated at over 1000V or over 400A, intended for use in complex systems in the second environment	E2R

Note that category 4 is more restrictive than E2R, since the rated current of the PDS must exceed 400A or the supply voltage exceed 1000V, for the complete PDS.


Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

Related product standards

The conducted emission levels specified in EN 61800-3:2004 and EN 61000-6-4:2007 are equivalent to the levels required by the following product specific standards:

Condu	cted emission from 150kHz	to 30MHz
Generic standard	Product st	tandard
	EN 55011 Class B CISPR 11 Class B	Industrial, scientific and medical equipment
EN 61800-3:2004	EN 55014 CISPR 14	Household electrical appliances
	EN 55022 Class B CISPR 22 Class B	Information technology equipment
EN 61000-6-4:2007	EN 55011 Class A Group 1 CISPR 11 Class A Group 1	Industrial, scientific and medical equipment
211 0 1000 0 4.2001	EN 55022 Class A CISPR 22 Class A	Information technology equipment

Figure 6-4 EMC filter dimensions

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

Table 6-7 EMC filter dimensions

Schaffner part no.	Α	В	С	D	E	F	н	U	v	w	Х	Y	Z
FS6512-12-07 FS6512-12-07- LL	155mm (6.10in)	183.5mm (7.22in)	45mm (1.77in)			144mm (5.66in)	203mm (7.99in)	16 AWG		75mm (2.95in)			
FS6513-20-07 FS6513-20-07- LL FS6513-10-07 FS6513-10-07- LL	209mm (8.22in)	237.7mm (9.35in)	50mm (1.96in)	40mm (1.57in)	20mm (0.78in)	193.5mm (7.61in)	257.2mm (10.12in)	14 AWG	M4	80mm (3.15in)	M4	8.7mm (0.34in)	4.5mm (0.17in)
FS6513-27-07 FS6514-24-07 FS6514-24-07- LL	260mm	288.5mm	65mm	45mm		244mm	308mm	AWG 12 AWG		94mm			
FS6514-14-07 FS6514-14-07- LL	(10.23in)	(11.35in)	(2.55in)	(1.77in)		(9.60in)	(12.12in)	16 AWG		(3.70in)			
FS6515-24-07 FS6515-24-07- LL FS6515-16-07 FS6515-16-07- LL	338mm (13.31in)	396.5mm(15.61in)	86mm (3.39in)	51.5mm (2.03in)	23mm (0.91in)	315mm (12.40in)	416mm (16.38in)	12 AWG 14 AWG		114.5mm (4.51in)	M6	12mm (0.47in)	6.5mm (0.26in)

6.5 Digidrive SK size 2 to 6

Table 6-8 External EMC filter data

Driv	/e		Filter part number	Moun	ting	Max motor cable length to meet EMC
LS	СТ	Schaffner	Epcos	Footprint	Side	requirements (m)
SK 4.5 TL to	SK2201 to	FS6008-32-07		Y	Υ	
SK 8 TL	SK2203		B84143-A32-R207-1-7659	Υ	Υ	
SK 11 TL and	SK3201 and	FS6008-75-07		Υ	Υ	
SK 16 TL	SK3202		B84143-A75-R2071	Y	Y	
SK 22 TL to	SK4201 to	FS6008-101-35		Y	Y	7
SK 33 TL	SK4203		B84143-A101-R207-51-76592	Y	N	7
SK 8 T to	SK2401 to	FS6008-32-07		Y	Υ	
SK 20 T	SK2404		B84143-A32-R207-1-7659	Y	Y	
SK 22 T to	SK3401 to	FS6008-62-07		Y	Y	
SK 33 T	SK3403		B84143-A75-R2071	Υ	Y	7
SK 40 T to	SK4401 to	FS6008-101-35		Y	N	
SK 60 T	SK4403		B84143-A101-R207-51-76592	Y	N	100
SK 75 T and	SK5401 and	FS6008-164-40		Y	N	100
SK 100 T	SK5402		B84143-A165-R207-53-76592	Y	N	7
SK 120 T and	SK6401 and	FS6008-260-99		Y	N	
SK 150 T	SK6402		B84143-A260-S207-2-7659	Y	N	
SK 3.5 TM to	SK3501 to	FS6008-30-07		Y	Υ	
SK 22 TM	SK3507		B84143-A30-R207-1-7659	Y	Y	1
SK 22 TH to	SK4601 to	FS6008-58-53		Y	N	
SK 60 TH	SK4606		B84143-A58-R207-51-7659	Y	N	1
SK 75 TH and	SK5601 and	FS6008-95-35		Y	N	1
SK 100 TH	SK5602		B84143-A165-A95	Y	N	1
SK 120 TH and	SK6601 and	FS6008-160-99		Y	N	7
SK 150 TH	SK6602		B84143-A160-S207-2-7659	Υ	N	

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

Table 6-9 External EMC filter ratings

		-	mum	Voltage		Power	Ground leaka	ge	
Manufacturer's part no.	Manufacturer	@ 40°C (104°F) A	@ 50°C (122°F) A	rating V	IP rating	dissipation at rated current	Balanced supply phase-to-phase and phase-to-ground mA	Worst case mA	Discharge resistors
FS6008-32-07		32	28.2	400		11	38.0	206	
FS6008-62-07		62	56.6	400		23	66.0	357	See Note 1
FS6008-75-07		75	68.5	240		29	24.0	170	
FS6008-30-07		30	30	575	20	15	102.0	557	See Note 3
FS6008-101-35	Schaffner	101	92.2	400	20	25	73.0	406	See Note
FS6008-58-53	Schaimer	58	52.8	690		31	66.0	344	See Note
FS6008-164-40		164	150	480		30	39.1	216	See Note 4
FS6008-95-35		95	86.7	690		30	66.0	344	
FS6008-260-99		260	237	480	00	14.2	41.0	219	See Note 1
FS6008-160-99		160	146	690	00	5.4	88.5	296	
B84143-A32- R207-1-7659		32	29.1	400		17.8	<30.0	186.5	
B84143-A75- R2071		75	68.3	400		19.4	<50.0	238	Soo Noto
B84143-A30- R207-1-7659		30	22.5	660		17.6	<35.0	230	See Note 2
B84143-A101- R207-51-76592		101	75	480	20	30	<30.0	180	
B84143-A58- R207-51-7659	Epcos	58	44	690		15	<40.0	<340	See Note
B84143-A165- R207-53-76592		165	125	480		27	<20.0	<120	See Note
B84143-A165- A95-R207-51- 7659		95	71	690		19	<55.0	<450	
B84143-A260- S207-2-7659		260	195	480	00	13	<45.0	<375	See Note
B84143-A160- S207-2-7659		160	120	690	00	5	<60.0	<520	

NOTE

- 1. $1M\Omega$ in a star connection between phases, with the star point connected by a $680k\Omega$ resistor to ground (i.e. line to line $2M\Omega$, line to ground $1.68M\Omega$)
- 2. $1M\Omega$ in a star connection between phases, with the star point connected by a $1.5M\Omega$ resistor to ground (i.e. line to line $2M\Omega$, line to ground $2.5M\Omega$)
- 3. $2M\Omega$ between phases with each phase connected by a $660k\Omega$ resistance to ground.
- 4. $1.5M\Omega$ in a star connection between phases, with the star point connected by a $680k\Omega$ resistor to ground (i.e. line to line $3M\Omega$, line to ground $2.18M\Omega$)
- 5. $1.8M\Omega$ in a star connection between phases, with the star point connected by a $1.5M\Omega$ resistor to ground (i.e. line to line $3.6M\Omega$, line to ground $3.3M\Omega$)

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

6.5.1 Conformity for sizes 2 to 6

Table 6-10 Conformity size 2 to 4

D-	ive	Mataria				Filter a	nd switching	frequency			
Di	ive	Motor cable length (m)		Internal		Int	ernal and ferr	ite*		External	
LS	СТ		3kHz	6kHz	12kHz	3kHz	6kHz	12kHz	3kHz	6kHz	12kHz
		Any		E2R	•						
		0 to 4					E2U	E2R			
SK 4.5 TL	SK2201	4 to 10				E2U	E2F	₹			
to	to	> 10					E2R				
SK 8 TL	SK2203	0 to 25								R	ı
		25 to 75								I	
		75 to 100							I		
		Any		E2R	•						
		0 to 4					E2U	E2R			
SK 8 T	SK2401	4 to 10				E2U	E2F	₹			
to	to	> 10					E2R				
SK 20 T	SK2404	0 to 25								R	I
		25 to 75								ı	
		75 to 100							ı		
		Any		E2R							
		0 to 10				E2U	E2F	₹			
SK 11 TL	SK3201	> 10					E2R				
to	and	0 to 20							R	1	
SK 16 TL	SK3202	20 to 50								l	
		50 to 75								I	
		75 to 100							I		
		Any		E2R							
		0 to 10				E2U	E2F	₹			
SK 22 T	SK3401	> 10					E2R				
to	to	0 to 20							R	1	•
SK 33 T	SK3403	20 to 50									
		50 to 75								I	
		75 to 100							I		
		Any		E2R	•						
		0 to 10									
SK 3.5 TM	SK3501	> 10									
to	to	0 to 20							R	1	•
SK 22 TM	SK3507	20 to 50								1	
		50 to 75								ı	
		75 to 100							I		
		Any		E2R							
SK 22 TL	SK4201	0 to 25									
to	to	25 to 50								I	
SK 33 TL	SK4203	50 to 75							I	E2U	
		75 to 100							I	E2U	
		Any		E2R							
SK 40 T	SK4401	0 to 25									
to	to	25 to 50								1	
SK 60 T	SK4403	50 to 75							I	E2U	
		75 to 100							ı	E2U	

^{*} Included in the Accessory Kit Box.

1	Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
	data	and losses	levels	design	installation	ENIC	reactors	lengths	data	specification	types	Options

Table 6-11 Conformity size 4 to 6

D:				Filter and swite	ching frequency	
Dri	ve	Motor cable length (m)	Inter	nal	Ext	ernal
LS	CT	iongai (iii)	3kHz	6kHz	3kHz	6kHz
		Any	E2	R		
SK 22 TH	SK4601	0 to 25			I	1
to	to	25 to 50			I	E2U
SK 60 TH	SK4606	50 to 75			Ţ	E2U
		75 to 100			Ţ	E2U
SK 75 T	SK5401	100	E2	U		
and SK 100 T	and SK5402	0 to 100			1	I
SK 75 TH	SK5601	100	E2	R		
and	and	0 to 25			I	I
SK 100 TH	SK5602	0 to 100			I	
SK 120 T	SK6401	0 to 100	E2	U		
and	and	100 to max*	E2	R		
SK 150 T	SK6402	0 to 100			I	ı
		0 to 100	E2	U		
SK 120 TH and	SK6601 and	100 to max*	E2	R		
SK 150 TH	SK6602	0 to 25			I	I
S.C 150 111	3.13002	0 to 100			Į.	Do not use

^{*}See Chapter 8 *Motor cable lengths* on page 105 for maximum permitted length.

6.5.2 Compliance with EN 61800-3:2004 (standard for Power Drive Systems)

Meeting the requirements of this standard depends on the environment that the drive is intended to operate in, as follows:

Operation in the first environment

Observe the guidelines given in Compliance with generic emission standards section. An external EMC filter will always be required.

This is a product of the restricted distribution class according to IEC 61800-3

In a residential environment this product may cause radio interference in which case the user may be required to take adequate measures.

Operation in the second environment

In all cases a shielded motor cable must be used, and an EMC filter is required for all Digidrive SKs with a rated input current of less than 100A.

The drive contains an in-built filter for basic emission control. In some cases feeding the motor cables (U, V and W) once through a ferrite ring can maintain compliance for longer cable lengths. The requirements of operating in the second environment are met, depending on the motor cable length for 3kHz switching frequency as stated in Table 6-10 and Table 6-11.

Key (shown in decreasing order of permitted emission level):

E2R EN 61800-3:2004 second environment, restricted distribution (Additional measures may be required to prevent interference)

E2U EN 61800-3:2004 second environment, unrestricted distribution

I Industrial generic standard EN 50081-2 (EN 61000-6-4:2007) EN 61800-3:2004 first environment restricted distribution (The following caution is required by EN 61800-3:2004)

This is a product of the restricted distribution class according to IEC 61800-3. In a residential environment this product may cause radio interference in which case the user may be required to take adequate measures.

R Residential generic standard EN 50081-1 (EN 61000-6-3:2007) EN 61800-3:2004 first environment unrestricted distribution

EN 61800-3:2004 defines the following:

- The first environment is one that includes residential premises. It
 also includes establishments directly connected without intermediate
 transformers to a low-voltage power supply network which supplies
 buildings used for residential purposes.
- The second environment is one that includes all establishments other than those directly connected to a low-voltage power supply network which supplies buildings used for residential purposes.

Restricted distribution is defined as a mode of sales distribution in which the manufacturer restricts the supply of equipment to suppliers, customers or users who separately or jointly have technical competence in the EMC requirements of the application of drives.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

6.5.3 Overall external EMC filter dimensions

Table 6-12 Optional external EMC filter dimensions

Manufacturer	Manufacturer's part no.		Dimension		Wei	ight
Manufacturer	Manufacturer 5 part no.	Н	W	D	kg	lb
	FS6008-32-07	428.5 mm (16.870 in)	155 mm (6.102 in)	55 mm (2.165 in)	2	4.4
	FS6008-62-07					
	FS6008-75-07	414 mm (16.299 in)	250 mm (9.842 in)	60 mm (2.362 in)	3.5	7.7
	FS6008-30-07					
Schaffner	FS6008-101-35		225 mm (8.858 in)	100 mm (3.937 in)	4	8.8
Schainlei	FS6008-58-53	200 mm (11 011 in)	208 mm (8.189 in)	100 11111 (3.937 111)	3.8	8.4
	FS6008-164-40	300 mm (11.811 in)	249 mm (9.803 in)	120 mm (4.724 in)	6.8	15
_	FS6008-95-35		225 mm (8.858 in)	100 mm (3.937 in)	4.4	9.7
	FS6008-260-99	295 mm (11.614 in)	230 mm (9.055 in)	136 mm (5.354 in)	5.25	11.6
	FS6008-160-99	357 mm (14.055 in)	230 mm (9.055 in)	136 mm (5.354 in)	5.25	11.6
	B84143-A32-R207-1-7659	431.5 mm (16.988 in)	155 mm (6.102 in)	55 mm (2.165 in)	3.3	7.3
	B84143-A75-R2071	425 mm (16.732 in)	250 mm (9.843 in)	60 mm (2.362 in)	5.1	11.2
	B84143-A30-R207-1-7659	425 11111 (10.732 111)	250 11111 (9.043 111)	00 11111 (2.302 111)	3.1	11.2
	B84143-A101-R207-51-76592		207 mm (8.150 in)	00 mm (2 F42 in)	7.8	17.2
Epcos	B84143-A58-R207-51-7659		205 mm (8.071 in)	90 mm (3.543 in)	8.0	17.6
Ерсоз	B84143-A165-R207-53-76592	300 mm (11.811 in)			12.0	26.5
	B84143-A165_A95-R207-51- 7659		249 mm (9.803 in)	120 mm (4.724 in)	10.0	22.0
	B84143-A260-S207-2-7659 B84143-A160-S207-2-7659	364 mm (14.331 in)	230 mm (9.055 in)	147 mm (5.787 in)	8.6	19.0

6.5.4 External EMC filter torque settings size 2 to 6

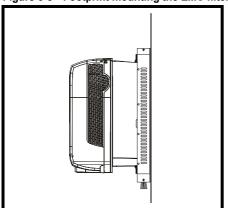
Table 6-13 Optional external EMC filter terminal data

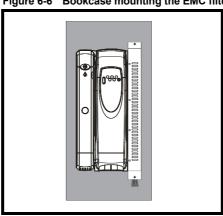
Manaretaatuuran	Manusfacture via mant us	Power co	nnections	Ground co	onnections
Manufacturer	Manufacturer's part no.	Max cable size	Max torque	Ground stud size	Max torque
	FS6008-32-07	10mm ² 8AWG	2.0 N m (1.5 lb ft)	M5	3.5 N m (2.6 lb ft)
	FS6008-62-07				
	FS6008-75-07	16mm ² 6AWG	2.2 N m (1.6 lb ft)	M6	3.9 N m (2.9 lb ft)
	FS6008-30-07				
0 - 1 11	FS6008-101-35	50mm ² 0AWG	8 N m (5.9 lb ft)	M10	25 N m (18.4 lb ft)
Schaffner	FS6008-58-53	25mm ² 4AWG	2.3 N m (1.7 lb ft)	M6	3.9 N m (2.9 lb ft)
	FS6008-164-40	95mm ² 4/0AWG	20 N m (14.7 lb ft)		
	FS6008-95-35	50mm ² 0AWG	8 N m (5.9 lb ft)	M10	25 N m (18.4 lb ft)
-	FS6008-260-99			WITO	2014111 (10.41011)
	FS6008-160-99				
	B84143-A32-R207-1-7659	10mm ² 8AWG	1.35 N m (1.0 lb ft)	M5	3.0 N m (2.2 lb ft)
	B84143-A75-R2071	16mm ² 6AWG	2.2 N m (1.6 lb ft)	M6	5 1 N m /2 0 lb ft)
	B84143-A30-R207-1-7659	10mm ² 8AWG	1.35 N m (1.0 lb ft)	IVIO	5.1 N m (3.8 lb ft)
	B84143-A101-R207-51-76592	50mm ² 0AWG	6.0 N m /F 0 lb ft)		
Epcos	B84143-A58-R207-51-7659	50mm- UAVVG	6.8 N m (5.0 lb ft)		
	B84143-A165-R207-53-76592				
	B84143-A165_A95-R207-51- 7659	95mm ² 4/0AWG	20 N m (14.7 lb ft)	M10	10 N m (7.4 lb ft)
	B84143-A260-S207-2-7659				
	B84143-A160-S207-2-7659				

Derating curves Drive voltage Supply types Technical DC bus Mechanical AC line Motor cable General I/O **EMC** Options data and losses levels design installation reactors lengths data specification

The external EMC filters for sizes 2 and 3 can be footprint or bookcase mounted, see Figure 6-5 and Figure 6-6. The external EMC filters for sizes 4 to 6 are designed to be mounted above the drive, as shown in Figure 6-7.

High ground leakage current


When an EMC filter is used, a permanent fixed ground connection must be provided which does not pass through a connector or flexible power cord. This includes the internal WARNING EMC filter.


NOTE

The installer of the drive is responsible for ensuring compliance with the EMC regulations that apply where the drive is to be used.

Mount the external EMC filter following the guidelines in section Compliance with generic emission standards on page 98.

Figure 6-5 Footprint mounting the EMC filter Figure 6-6 Bookcase mounting the EMC filter Figure 6-7 Size 4 to 6 mounting of EMC filter

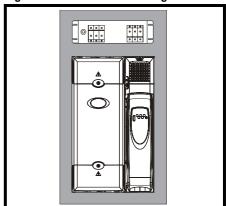
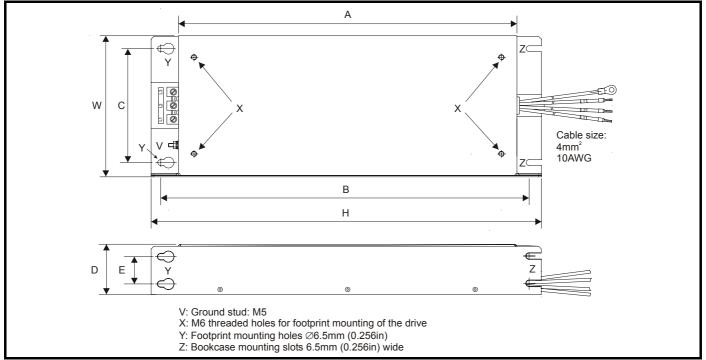
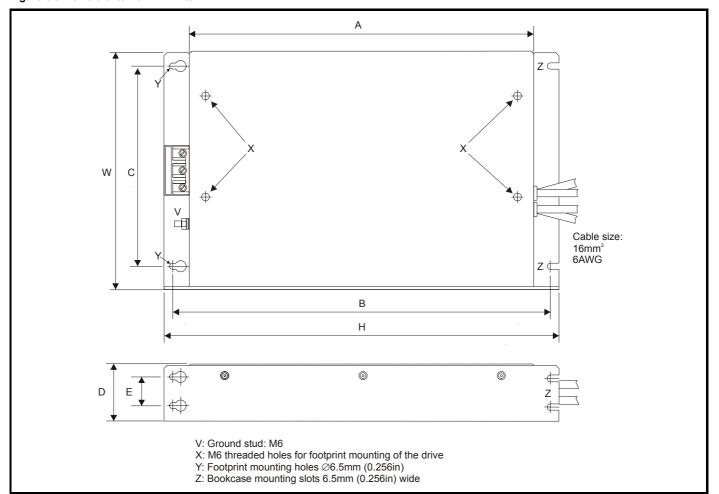



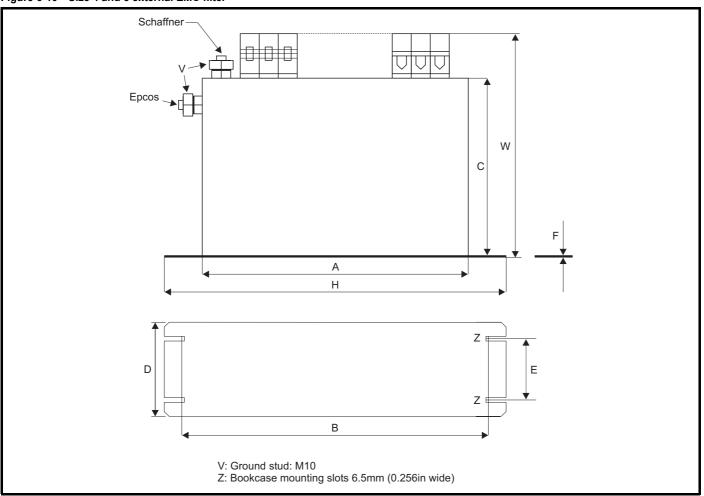
Figure 6-8 Size 2 external EMC filter



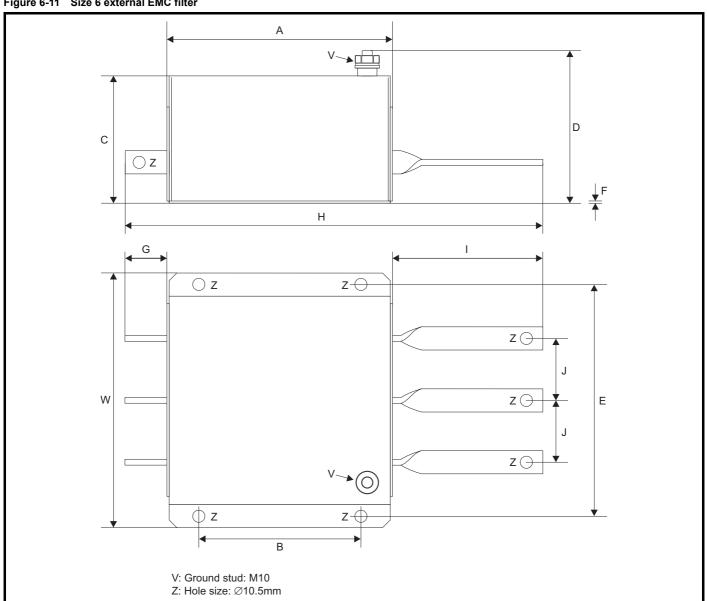
All filter mounting holes are suitable for M6 fasteners.

Manufacturer	Manufacturer's part no.	Α	В	С	D	E	Н	W
Schaffner	FS6008-32-07	371.5 mm	404.5 mm	125 mm	55 mm	30 mm	428.5 mm (16.870 in)	155 mm
Epcos	B84143-A32-R207-1-7659	(14.626 in)	(15.925 in)	(4.921 in)	(2.165 in)	(1.181 in)	431.5 mm (16.988 in)	(6.102 in)

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options


Figure 6-9 Size 3 external EMC filter

Manufacturer	Manufacturer's part no.	Α	В	С	D	E	Н	W
	FS6008-62-07	361 mm					414 mm	
Schaffner	FS6008-75-07	(14.213 in)	396 mm (15.591 in)	210 mm (8.268 in)	60 mm (2.362 in)	30 mm (1.181 in)	(16.299 in)	250 mm
	FS6008-30-07	(11.210)					(10.200 111)	(9.843 in)
Epcos	B84143-A75-R2071	365 mm	(10.001 111)	(0.200 III)	(2.002 111)	(1.101 III)	425 mm	(0.040 111)
Lpcos	B84143-A30-R207-1-7659	(14.370 in)					(16.732 in)	


Figure 6-10 Size 4 and 5 external EMC filter

Manufacturer	Manufacturer's part no.	Α	В	С	D	E	F	Н	W
	FS6008-101-35				100 mm	65 mm			225 mm (8.858 in)
Schaffner	FS6008-58-53			170 mm	(3.937 in)	(2.559 in)	1.5 mm		208 mm (8.189 in)
Schaine	FS6008-164-40			(6.693 in)	120 mm (4.724 in)	85 mm (3.346 in)	(0.059in)		249 mm (9.803 in)
	FS6008-95-35	260 mm	275 mm (10.827 in)		100 mm (3.937 in)	65 mm (2.559 in)		300 mm - (11.811 in)	225 mm (8.858 in)
	B84143-A101-R207-51-76592	(10.230 111)		150 mm	90 mm	65 mm (2.559 in)	2 mm (0.079 in)		207 mm (8.150 in)
Epcos	B84143-A58-R207-51-7659			(5.906 in)	(3.543in)				205 mm (8.071 in)
	B84143-A165-R207-53-76592 B84143-A165 A95-R207-51-			170 mm	120 mm	85 mm	1 mm		249 mm
E	7659			(6.693 in)	(4.724 in)	(3.346 in)	(0.039 in)		(9.803 in)

Size 6 external EMC filter Figure 6-11

Manufacturer	Manufacturer's part no.	A	В	С	D	E	F	G	Н	I	J	w		
Schaffner	FS6008-260-99	191 mm	140 mm	ı ` ´	136 mm (5.354 in)	210 mm	2 mm	38 mm (1.496 in)	295 mm (11.614 in)	66 mm (2.958 in)				
Condinier	FS6008-160-99	(7.717 in)							357 mm (14.055 in)			230 mm		
Encos	B84143-A260-S207- 2-7659	200 mm					147 mm	(8.268 in)	(0.079in)	36.5 mm	364 mm	127 mm	(2.106 in)	(9.055 in)
Epcos	B84143-A160-S207- 2-7659	(7.874 in)		(4.252 in)				(1.437 in)	(14.331 in)	(5.000 in)				

To also the site of	D	D	DO 1	Marshardan		A O 1' · · ·	Materiality	0	1/0	0	
Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontiono
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

6.5.5 Compatibility of Digidrive SK EMC filters with IT supplies

Table 6-14 shows the maximum IT supply voltages allowed when using Schaffner EMC filters with Digidrive SK size A to D.

Table 6-14 Maximum IT supply voltages

	Drive	Filter part number	Maximum IT supply
LS	СТ	Schaffner	(Vac)
SK 0.5 ML, SK 1 ML, SK 0.5 M, SK 1 M, SK 1.2 M and SK 1.5 M	SKA1100025, SKA1100037, SKA1200025, SKA1200037, SKA1200055 and SKA1200075	FS6512-12-07	300
SK 0.5 ML, SK 1 ML, SK 0.5 M, SK 1 M, SK 1.2 M and SK 1.5 M	SKA1100025, SKA1100037, SKA1200025, SKA1200037, SKA1200055 and SKA1200075	FS6512-12-07-LL	250
SK 2 M/TL and SK 2.5 M/TL	SKBD200110 and SKBD200150	FS6513-20-07	300
SK 2 M/TL and SK 2.5 M/TL, SK 1 T to SK 2.5 T	SKBD200110 and SKBD200150, SKB3400037 to SKB3400150	FS6513-10-07	420
SK 2 M/TL and SK 2.5 M/TL	SKBD200110 and SKBD200150	FS6513-20-07-LL	250
SK 2 M/TL and SK 2.5 M/TL, SK 1 T to SK 2.5 T	SKBD200110 andSKBD200150, SKB3400037 to SKB3400150	FS6513-10-07-LL	485
SK 1.5 ML and SK 2 ML	SKB1100075 and SKB1100110	FS6513-27-07	300
SK 3.5 M/TL, SK 3.5 T to SK 5.5 T	SKCD200220, SKC3400220 to SKC3400400	FS6514-14-07-LL	485
SK 3.5 M/TL	SKCD200220	FS6514-24-07	300
SK 3.5 M/TL, SK 3.5 T to SK 5.5 T	SKCD200220, SKC3400220 to SKC3400400	FS6514-14-07	420
SK 3.5 M/TL	SKCD200220	FS6514-24-07-LL	250
SK 4.5 M/TL	SKDD200300	FS6515-24-07	300
SK 4.5 M/TL	SKDD200300	FS6515-24-07-LL	250
SK 4.5 M/TL, SK 5 TL, SK 7 T and SK 10 T	SKDD200300, SKD3200400, SKD3400550 and SKD3400750	FS6515-16-07	420
SK 4.5 M/TL, SK 5 TL, SK 7 T and SK 10 T SKDD200300, SKD3200400, SKD3400550 and SKD3400750		FS6515-16-07-LL	485

Table 6-15 shows the maximum IT supply voltages allowed when using Schaffner EMC filters with Digidrive SK size 2 to 6

Table 6-15 Maximum IT supply voltages

Dri	ve	Filter part number	Maximum IT supply
LS	СТ	Schaffner	(Vac)
SK 4.5 TL to SK 8 TL	SK2201 to SK2203	FS6008-32-07	300
SK 8 T to SK 20 T	SK2401 to SK2404	FS6008-32-07	NC
SK 8 T	SK2401	FS24082-16-07-1	440
SK 16 T and SK 20 T	SK2403 and SK2404	FS24082-28-07-1	440
SK 22 T	SK3401	FS24082-40-07-1	440
SK 22 T to SK 33 T	SK3401 to SK3403	FS6008-62-07	400
SK 11 TL and SK 16 TL	SK3201 and SK3202	FS6008-75-07	420
SK 3.5 TM to SK 22 TM	SK3501 to SK3507	FS6008-30-07	600
SK 22 TL à SK 33 TL, SK 40 T to SK 60 T	SK4201 to SK4203, SK4401 to SK4403	FS6008-101-35	420
SK 22 TH to SK 60 TH	SK4601 to SK4606	FS6008-58-53	400
SK 75 T and SK 100 T	SK5401 and SK5402	FS6008-164-40	435
SK 75 TH and SK 100 TH	SK5601 and SK5602	FS6008-95-35	585
SK 120 T and SK 150 T	SK6401 and SK6402	FS6008-260-99	450
SK 120 TH and SK 150 TH	SK6601 and SK6602	FS6008-160-99	605

 $Table \ 6\text{-}16 \ shows \ the \ maximum \ IT \ supply \ voltages \ allowed \ when \ using \ Epcos \ EMC \ filters \ with \ Digidrive \ SK \ size \ 2 \ to \ 6.$

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

Table 6-16 Maximum IT supply voltages

Dri	ive	Filter part number	Maximum IT supply
LS	СТ	Epcos	(Vac)
SK 4.5 TL to SK 8 TL, SK 8 T to SK 20 T	SK2201 to SK2203, SK2401 to SK2404	B84143-A32-R207-1	480
SK 11 TL and SK 16 TL, SK 22 T to SK 33 T	SK3201 and SK3202, SK3401 to SK3403	B84143-A75-R207	480
SK 3.5 TM to 22 TM	SK3501 to SK3507	B84143-A30-R207	660
SK 22 TL to SK 33 TL, SK 40 T to SK 60 T	SK4201 to SK4203, SK4401 to SK4403	B84143-A101-R207	480
SK 22 TH to SK 60 TH	SK4601 to SK4606	B84143-A58-R207	660
SK 75 T and SK 100 T	SK5401 and SK5402	B84143-A165-R207	480
SK 75 TH and SK 100 TH	SK5601 and SK5602	B84143-A95-R207	630
SK 120 T and SK 150 T	SK6401 and SK6402	B84143-A260-S207	480
SK 120 TH and SK 150 TH	SK6601 and SK6602	B84143-A160-S207	480

Surge immunity of control circuits - long cables and connections outside a building

The input/output ports for the control circuits are designed for general use within machines and small systems without any special precautions.

These circuits meet the requirements of EN 61000-6-2:2005 (1kV surge) provided the 0V connection is not grounded.

In applications where they may be exposed to high-energy voltage surges, some special measures may be required to prevent malfunction or damage. Surges may be caused by lightning or severe power faults in association with grounding arrangements which permit high transient voltages between nominally grounded points. This is a particular risk where the circuits extend outside the protection of a building.

As a general rule, if the circuits are to pass outside the building where the drive is located, or if cable runs within a building exceed 30m, some additional precautions are advisable. One of the following techniques should be used:

- Galvanic isolation, i.e. do not connect the control 0V terminal to ground. Avoid loops in the control wiring, i.e. ensure every control wire is accompanied by its return (0V) wire.
- 7. Shielded cable with additional power ground bonding. The cable shield may be connected to ground at both ends, but in addition the ground conductors at both ends of the cable must be bonded together by a power ground cable (equipotential bonding cable) with cross-sectional area of at least 10mm², or 10 times the area of the signal cable shield, or to suit the electrical safety requirements of the plant. This ensures that fault or surge current passes mainly through the ground cable and not in the signal cable shield. If the building or plant has a well-designed common bonded network this precaution is not necessary.
- Additional over-voltage suppression for the analog and digital inputs and outputs, a zener diode network or a commercially available surge suppressor may be connected in parallel with the input circuit as shown in Figure and Figure 6-13.

If a digital port experiences a severe surge its protective trip may operate (O.Ld1 trip code 26). For continued operation after such an event, the trip can be reset automatically by setting \Pr **10.34** to 5.

Figure 6-12 Surge suppression for digital and unipolar inputs and outputs

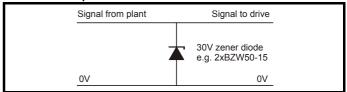
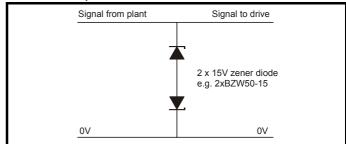



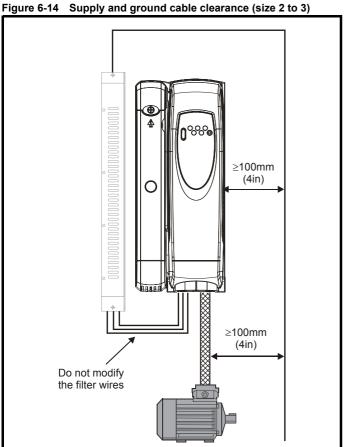
Figure 6-13 Surge suppression for analog and bipolar inputs and outputs

Surge suppression devices are available as rail-mounting modules, e.g. from Phoenix Contact:

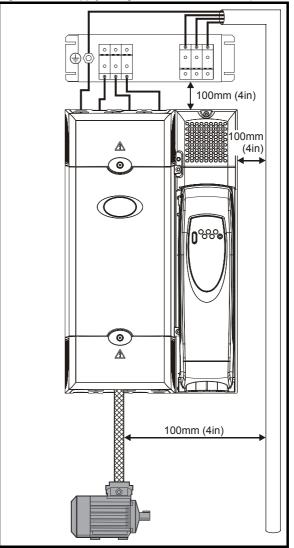
Unipolar TT-UKK5-D/24 DC Bipolar TT-UKK5-D/24 AC

These devices are not suitable for encoder signals or fast digital data networks because the capacitance of the diodes adversely affects the signal. Most encoders have galvanic isolation of the signal circuit from the motor frame, in which case no precautions are required. For data networks, follow the specific recommendations for the particular network.

Supply types Technical Derating curves Drive voltage DC bus Mechanical AC line Motor cable General I/O **EMC** Options data and losses levels design installation reactors lengths data specification

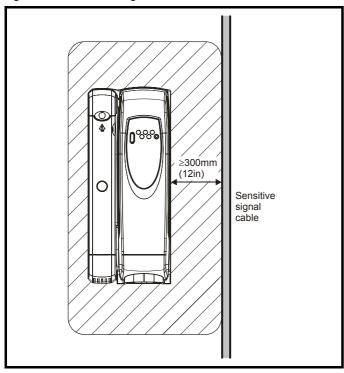

Compliance with generic emission standards

The following information applies to frame sizes A to D and 2 to 5.


Size 6 does not comply with the requirements of the generic standards for radiated emission.

Size 6 complies with the requirements for conducted emission.

Use the recommended filter and shielded motor cable. Observe the layout rules given in Figure 6-14. Ensure the AC supply and ground cables are at least 100mm from the power module and motor cable.


Supply and ground cable clearance (size 4 to 6) Figure 6-15

Technical Derating curves Drive voltage DC bus Mechanical AC line Motor cable General I/O Supply types **EMC** Options data and losses design installation reactors lengths data specification levels

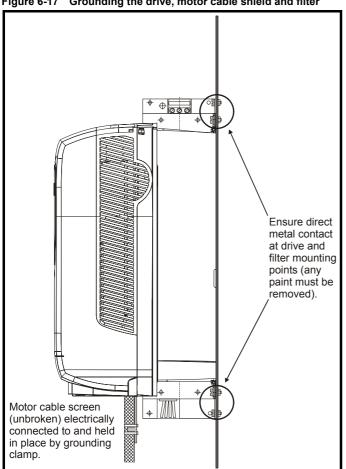
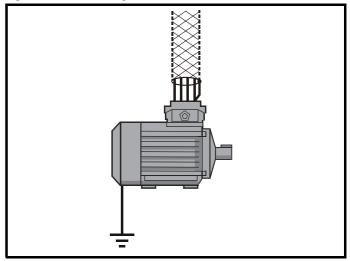

Avoid placing sensitive signal circuits in a zone 300mm (12in) all around the power module.

Figure 6-16 Sensitive signal circuit clearance

Ensure good EMC grounding.


Figure 6-17 Grounding the drive, motor cable shield and filter

Connect the shield of the motor cable to the ground terminal of the motor frame using a link that is as short as possible and not exceeding 50mm (2in) long. A full 360° termination of the shield to the terminal housing of the motor is beneficial.

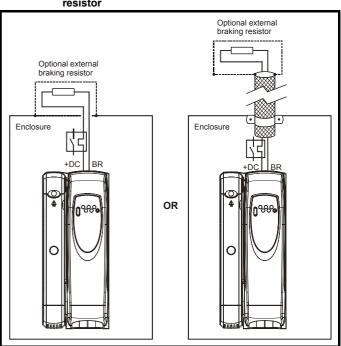
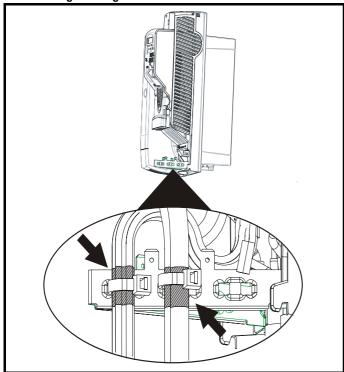

It is unimportant for EMC purposes whether the motor cable contains an internal (safety) ground core, or there is a separate external ground conductor, or grounding is through the shield alone. An internal ground core will carry a high noise current and therefore it must be terminated as close as possible to the shield termination.

Figure 6-18 Grounding the motor cable shield

Unshielded wiring to the optional braking resistor(s) may be used, provided the wiring does not run external to the enclosure. Ensure a minimum spacing of 300mm (12in) from signal wiring and the AC supply wiring to the external EMC filter. Otherwise this wiring must be shielded.

Figure 6-19 Shielding requirements of optional external braking resistor



Technical Derating curves Drive voltage DC bus Mechanical AC line Motor cable General I/O Supply EMC Options and losses design installation reactors lengths specification types data levels data

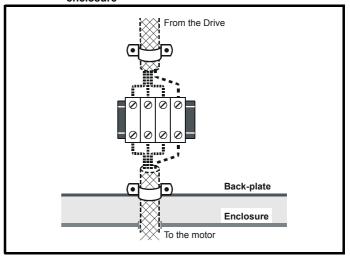
If the control wiring is to leave the enclosure, it must be shielded and the shield(s) clamped to the drive using the grounding bracket as shown in Figure 6-20. Remove the outer insulating cover of the cable to ensure the shield(s) make contact with the bracket, but keep the shield(s) intact until as close as possible to the terminals

Alternatively, wiring may be passed through a ferrite ring, part no. 3225-1004

Figure 6-20 Grounding of signal cable shields using the grounding bracket

Variations in the EMC wiring Interruptions to the motor cable

The motor cable should ideally be a single length of shielded or armored cable having no interruptions. In some situations it may be necessary to interrupt the cable, as in the following examples:

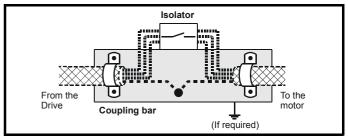

- Connecting the motor cable to a terminal block in the drive enclosure
- Fitting a motor isolator switch for safety when work is done on the motor

In these cases the following guidelines should be followed.

Terminal block in the enclosure

The motor cable shields should be bonded to the back-plate using uninsulated metal cable-clamps which should be positioned as close as possible to the terminal block. Keep the length of power conductors to a minimum and ensure that all sensitive equipment and circuits are at least 0.3m (12 in) away from the terminal block.

Figure 6-21 Connecting the motor cable to a terminal block in the

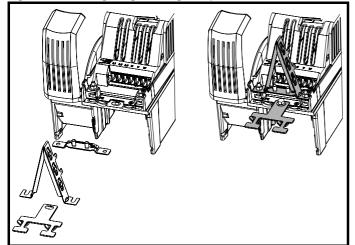

Using a motor isolator-switch

The motor cable shields should be connected by a very short conductor having a low inductance. The use of a flat metal coupling-bar is recommended; conventional wire is not suitable.

The shields should be bonded directly to the coupling-bar using uninsulated metal cable-clamps. Keep the length of the exposed power conductors to a minimum and ensure that all sensitive equipment and circuits are at least 0.3m (12 in) away.

The coupling-bar may be grounded to a known low-impedance ground nearby, for example a large metallic structure which is connected closely to the drive ground.

Figure 6-22 Connecting the motor cable to an isolator switch



Grounding hardware

The Digidrive SK size 2 and 3 are provided with a grounding bracket and grounding clamp. They can be used as cable management bracket/ clamp or they can be used to facilitate EMC compliance. They provide a convenient method for direct grounding of cable shields without the use of 'pig tails'. Cable shields can be bared and clamped to the grounding bracket using metal clips or clamps* (not supplied) or cable ties. Note that the shield must in all cases be continued through the cable clamp to the intended terminal on the drive, in accordance with the connection details for the specific signal.

*A suitable clamp is the Phoenix DIN rail mounted SK14 cable clamp (for cables with a maximum outer diameter of 14mm).

Figure 6-23 Fitting the grounding clamp

A faston tab is located on the grounding bracket for the purpose of connecting the drive 0V to ground should the user require to do so.

On Digidrive SK size 2, the grounding bracket is secured using the power ground terminal of the drive. Ensure that the supply ground connection is secure after fitting/removing the grounding bracket. Failure to do so will result in the drive not WARNING being grounded.

When a Digidrive SK size 4 or 5 is through-panel mounted, the grounding link bracket must be folded upwards. A screw can be used to secure the bracket or it can be located under the mounting bracket to ensure that a good ground connection is made. This is required to provide a grounding point for the grounding bracket as shown in Figure 6-24.

Figure 6-24 Grounding link bracket in its surface mount position (as supplied)

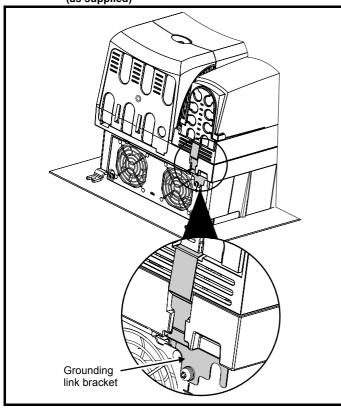
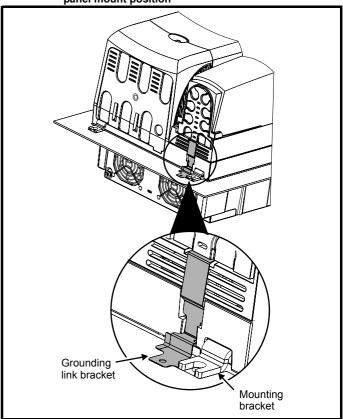



Figure 6-25 Grounding link bracket folded up into its throughpanel mount position

Internal EMC filter

It is recommended that the internal EMC filter be kept in place unless there is a specific reason for removing it.

On Digidrive SK size 3, 4, 5 and 6, when used with ungrounded (IT) supplies, the internal EMC filter must be removed unless additional motor ground fault protection is installed or, in the case of size 3 only, the external EMC filter is also used.

Table 6-17 Behavior of the drive in the event of a motor circuit ground (earth) fault with an IT supply

Drive size	Internal filter only	External filter (with internal)
2	Drive trips on fault	Drive trips on fault
3	May not trip – precautions required	Drive trips on fault
4 to 6	May not trip – precautions required	May not trip – precautions required

For instructions on removal, refer to Figure 6-2 and Figure 6-3.

Use of earth (ground) leakage circuit breakers (ELCB) / residual current device (RCD)

There are three common types of ELCB/RCD:

Type AC - detects AC fault currents

Type A - detects AC and pulsating DC fault currents (provided the DC current reaches zero at least once every half cycle)

Type B - detects AC, pulsating DC and smooth DC fault currents

- Type AC should never be used with drives
- Type A can only be used with single phase drives
- Type B must be used with three phase drives

Further EMC precautions

Further EMC precautions are required if more stringent EMC emission requirements apply:

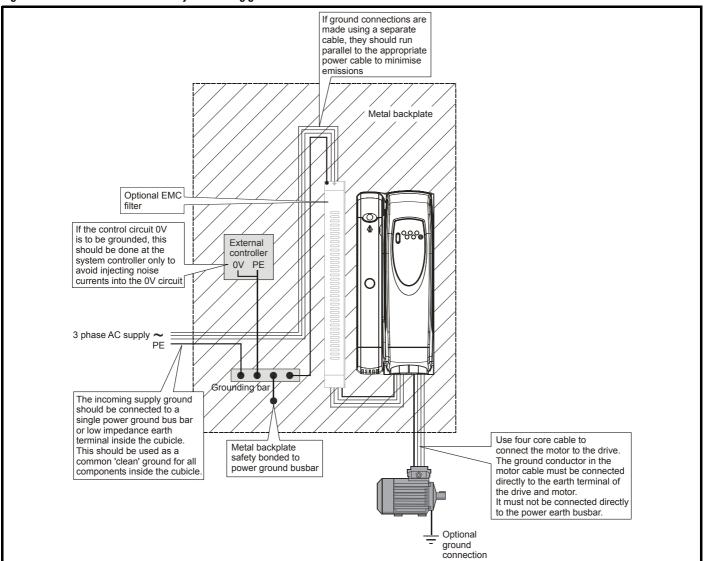
- Operation in the first environment
- Conformity to the generic emission standards

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

Equipment which is sensitive to electrical interference operating nearby

In this case it is necessary to use:

The optional external EMC filter

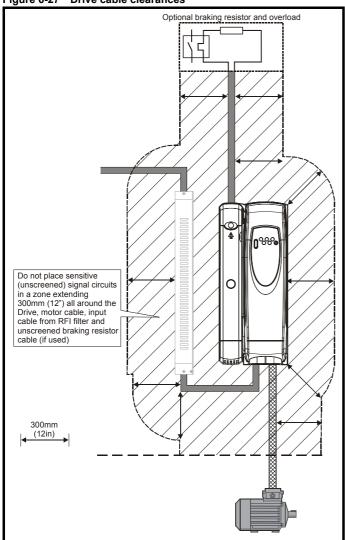

- · A shielded motor cable, with the shield clamped to the grounded metal panel
- · A shielded control cable, with the shield clamped to the grounded metal panel
- A full range of external EMC filters is also available for use with Digidrive SK.

General requirements for EMC Ground (earth) connections

The grounding arrangements should be in accordance with Figure 6-26, which shows a single drive on a back-plate with or without an additional enclosure.

Figure 6-26 shows how to manage EMC when using an unshielded motor cable. However a shielded cable is preferable, in which case it should be installed as shown in section *Compliance with generic emission standards* on page 98.

Figure 6-26 General EMC enclosure layout showing ground connections



Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Options
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

Cable layout

Figure 6-27 indicates the clearances which should be observed around the drive and related 'noisy' power cables by all sensitive control signals / equipment.

Figure 6-27 Drive cable clearances

NOTE

Any signal cables which are carried inside the motor cable (i.e. motor thermistor, motor brake) will pick up large pulse currents via the cable capacitance. The shield of these signal cables must be connected to ground close to the motor cable, to avoid this noise current spreading through the control system.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

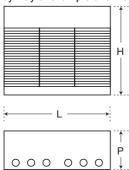

AC line reactors 7

Table 7-1 AC line reactor values

							Dimensions			
Drives used with		ed with	Input phases	ases Reactor part number	Current_A	Inductance_mH	L	н	Р	Weight_kg
SK	0,5	М	1	6,5SM2,25	6,5	2,25	90	72	65	0,5
SK	1	М	1	6,5SM2,25	6,5	2,25	90	72	65	0,5
SK	1,2	М	1	15,1SM1	15,1	1	100	82	75	1,1
SK	1,5	М	1	15,1SM1	15,1	1	100	82	75	1,1
SK	2	M/TL	1	15,1SM1	15,1	1	100	82	75	1,1
SK	2,5	M/TL	1	26,2SM0,5	26,2	0,5	105	82	90	1,5
SK	3,5	M/TL	1	26,2SM0,5	26,2	0,5	105	82	90	1,5
SK	4,5	M/TL	1	26,2SM0,5	26,2	0,5	105	82	90	1,5
SK	2	M/TL	3	21ST1,4	21	1,4	150	155	95	5,4
SK	2,5	M/TL	3	29ST1	29	1	150	155	95	5,4
SK	3,5	M/TL	3	46ST0,64	46	0,64	200	190	120	11
SK	4,5	M/TL	3	46ST0,64	46	0,64	200	190	120	11
SK	4,5	TL -	3	46ST0,64	46	0,64	200	190	120	11
SK	5	TL -	3	46ST0,64	46	0,64	200	190	120	11 11
SK	5,5	TL -	3	46ST0,64	46 75	0,64	200	190	120	15
SK	8	TL -	3	75ST0,39		0,39	225	210	160	
SK	11	TL -	3	105ST0,23	105	0,23	285 285	260 260	210 210	15 15
SK	16	TL -	3 3	105ST0,23	105 150	0,23 0,155	285	260	210	15
SK	22	TL -	3	150ST0,155	150	0,155	285	260	210	15
SK	27 33	TL TL	3	150ST0,155	185	0,133	285	260	220	20
SK SK	აა 1	T	3	185ST0,13 5,5ST4,2	5,5	4,2	130	125	75	2,5
SK	1,2	' - T	3	11ST2,6	11	2,6	130	125	75	2,5
SK	1,2 1,5	<u></u>	3	11ST2,6	11	2,6	130	125	75	2,5
SK	1,5	' - T	3	11ST2,6 11ST2,6	11	2,6	130	125	75	2,5
SK	2,5	' - T	3	11ST2,6	11	2,6	130	125	75	2,5
SK	3,5	<u> </u>	3	21ST1,4	21	1,4	150	155	95	5,4
SK	4,5	,	3	21ST1,4 21ST1,4	21	1,4	150	155	95	5,4
SK	5,5	, T	3	21ST1,4 21ST1,4	21	1,4	150	155	95	5,4
SK	7	÷ŀ	3	21ST1,4 21ST1,4	21	1,4	150	155	95	5,4
SK	8	÷ŀ	3	29ST1	29	1	150	155	95	5,4
SK	10	· + F	3	21ST1,4	21	1.4	150	155	95	5,4
SK	11	· + -	3	29ST1	29	1	150	155	95	5,4
SK	16	Ť	3	29ST1	29	<u>.</u>	150	155	95	5,4
SK	20	· + 1	3	29ST1	29	1	150	155	95	5,4
SK	22	Ť	3	46ST0,64	46	0,64	200	190	120	11
SK	27	T	3	46ST0,64	46	0,64	200	190	120	11
SK	33		3	75ST0,39	75	0,39	225	210	160	15
SK	40	т	3	75ST0,39	75	0,39	225	210	160	15
SK	50	т	3	105ST0,23	105	0,23	285	260	210	15
SK	60	T	3	105ST0,23	105	0,23	285	260	210	15
SK	75	т	3	150ST0,155	150	0,155	285	260	210	15
SK	100	т	3	185ST0,13	185	0,13	285	260	220	20
SK	120	т	3	220ST0,11	220	0,11	285	260	225	22,5
SK	150	т	3	292ST0,08	292	0,08	265	260	260	30

Note: For Digidrive SK 110V, 575V and 690V (0.5 ML to 2 ML, 3.5 TM to 22 TM and 22 TH to 150 TH), consult LEROY-SOMER.

• Dimensions and weight
These are given by way of example and may vary depending on the manufacturer..

Technical Derating curves Drive voltage DC bus Mechanical AC line I/O Motor cable General Supply **EMC** Options and losses design installation reactors specification types data levels data lengths

8 Motor cable lengths

8.1 Digidrive SK size A to D

Table 8-1 Motor cable lengths

Drive frame size	kW rating	Maximum motor cable length		
Α	0.25 and 0.37	50m		
	0.55 and 0.75	75m		
В		100m		
С		100m		
D		100m		

The capacitive loading of the drive by the motor cable means that the cable length limits shown in table 8-1 must be observed. Failure to do so can result in spurious OI.AC tripping of the drive. If longer cable lengths are required, consult your local Drive Centre or Distributor.

The maximum cable lengths were measured using cable with capacitance of 130pF/m.

This capacitance was measured by taking one phase as one node and the shield (screen) and ground (earth) (if any) as the other node, then measuring the capacitance between the two points.

8.2 Digidrive SK size 2 to 6

Table 8-2 Maximum motor cable lengths (200V drives)

	Table 0.2 maximum motor cable lengths (2004 anves)						
	200V Nominal AC supply voltage						
Мо	del	Maximum permissible motor cable length for each of the following frequencies					
LS	LS CT		6kHz	12kHz			
SK 4.5 TL	SK2201		100m (330ft)				
SK 5.5 TL	SK2202						
SK 8 TL	SK2203	200m (660ft)		50m (165ft)			
SK 11 TL	SK3201						
SK 16 TL	SK3202						
SK 22 TL	SK4201						
SK 27 TL	SK4202	250m (820ft)	125m (410ft)				
SK 33 TL	SK4203						

Table 8-3 Maximum motor cable lengths (400V drives)

	400V Nominal AC supply voltage					
Мо	del	Maximum permissible motor cable length for each of the following frequencies				
LS	СТ	3kHz	6kHz	12kHz		
SK 8 T	SK2401					
SK 11 T	SK2402		100m (330ft)			
SK 16 T	SK2403					
SK 20 T	SK2404	200m (660ft)		50m (165ft)		
SK 22 T	SK3401					
SK 27 T	SK3402	1				
SK 33 T	SK3403					
SK 40 T	SK4401					
SK 50 T	SK4402		125m (410ft)			
SK 60 T	SK4403					
SK 75 T	SK5401	250m (820ft)				
SK 100 T	SK5402					
SK 120 T	SK6401					
SK 150 T	SK6402					

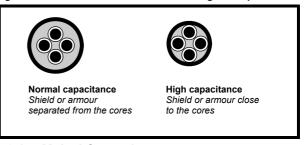
Table 8-4 Maximum motor cable lengths (575V drives)

	575V Nominal AC supply voltage						
Мо	del	Maximum permissible motor cable lengt for each of the following frequencies					
LS	СТ	3kHz	6kHz	12kHz			
SK 3.5 TM	SK3501						
SK 4.5 TM	SK3502						
SK 5.5 TM	SK3503						
SK 8 TM	SK3504	200m (660ft)	100m (330ft)				
SK 11 TM	SK3505						
SK 16 TM	SK3506						
SK 22 TM	SK3507						

Table 8-5 Maximum motor cable lengths (690V drives)

	690V Nominal AC supply voltage					
Мо	del	Maximum permissible motor cable length for each of the following frequencies				
LS	СТ	3kHz	6kHz	12kHz		
SK 22 TH	SK4601					
SK 27 TH	SK4602					
SK 33 TH	SK4603					
SK 40 TH	SK4604					
SK 50 TH	SK4605	250m (820ft)	125m (410ft)			
SK 60 TH	SK4606	250111 (62011)	125111 (41011)			
SK 75 TH	SK5601					
SK 100 TH	SK5602					
SK 120 TH	SK6601					
SK 150 TH	SK6602					

- Cable lengths in excess of the specified values may be used only when special techniques are adopted; refer to the supplier of the drive.
- · The default switching frequency is 3kHz.


High-capacitance cables

The maximum cable length is reduced from that shown in Table 8-1, Table 8-2, Table 8-3 and Table 8-4 if high capacitance motor cables are used.

Most cables have an insulating jacket between the cores and the armor or shield; these cables have a low capacitance and are recommended.

Cables that do not have an insulating jacket tend to have high capacitance; if a cable of this type is used, the maximum cable length is half that quoted in the tables. (Figure 8-1 shows how to identify the two types.)

Figure 8-1 Cable construction influencing the capacitance

8.2.1 Main AC supply contactor

The recommended AC supply contactor type for size A to D and 2 to 6 is AC1.

Derating curves Technical Drive voltage DC bus Mechanical AC line General I/O Supply Motor cable **EMC** Options data and losses design installation reactors lengths data specification levels types

8.2.2 Output contactor

If the cable between the drive and the motor is to be interrupted by a contactor or circuit breaker, ensure that the drive is disabled before the contactor or circuit breaker is opened or closed. Severe arcing may occur if this circuit is interrupted with the motor running at high current and low speed.

A contactor is sometimes required to be installed between the drive and motor for safety purposes.

The recommended motor contactor is the AC3 type.

Switching of an output contactor should only occur when the output of the drive is disabled.

Opening or closing of the contactor with the drive enabled will lead to:

- 1. OI.AC trips (which cannot be reset for 10 seconds)
- 2. High levels of radio frequency noise emission
- 3. Increased contactor wear and tear

8.2.3 Multiple motors

If the drive is to control more than one motor, one of the fixed V/F modes should be selected (Pr **5.14** = Fd or SrE). Make the motor connections as shown in Figure 8-2 and Figure 8-3. The maximum cable lengths in Table 8-1, Table 8-2, Table 8-3, Table 8-4 and Table 8-5 apply to the sum of the total cable lengths from the drive to each motor.

It is recommended that each motor is connected through a protection relay since the drive cannot protect each motor individually. For \boldsymbol{L} connection, a sinusoidal filter or an output inductor must be connected as shown in Figure 8-3, even when the cable lengths are less than the maximum permissible. For details of inductor sizes refer to the supplier of the drive.

Figure 8-2 Preferred chain connection for multiple motors

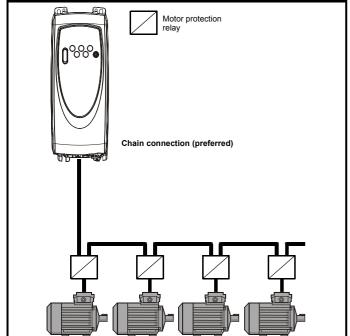
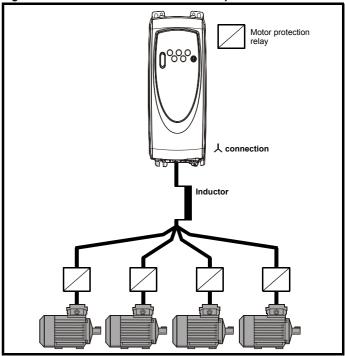



Figure 8-3 Alternative connection for multiple motors

Technical Derating curves Drive voltage DC bus Mechanical AC line Motor cable I/O General Supply **EMC** Options and losses levels design installation reactors lengths data specification types data

9 General data

9.1 Ratings

9.1.1 IP rating

All sizes

IP20

The drive complies with the requirements of IP20 as standard.

Size A to C

IP4X

 The top surface of the drive complies with the requirements of IP4X when the drive is mounted vertically with the optional top cover installed.

Size 2 to 6

IP54

 The drive can achieve IP54 rating (NEMA 12) at the rear of the heatsink for through-panel mounting (some current derating is required).

First digit: Protection against contact and ingress of foreign bodies.

- **2** Protection against medium size foreign bodies \emptyset > 12mm (e.g. finger)
- **4** Protected against solid objects over 1mm (e.g. tools, wires and small wires)
- **5** Protection against dust deposit, complete protection against accidental contact

Second digit: Protection against ingress of water.

- 0 No protection
- 4 Protection against splash water (from all directions)
- X Not tested

9.2 Input phase imbalance

3% between phases or 2% negative phase sequence.

9.3 Ambient temperature

Size A to D:

-10°C (14°F) to 40°C (104°F) at 3kHz

Operation up to 55°C (131°F) with de-rating.

(see de-rating curves for further information)

Size 2 to 6:

Ambient temperature operating range:

0°C to 50°C (32°F to 122°F).

Output current derating must be applied at ambient temperatures >40 $^{\circ}$ C (104 $^{\circ}$ F).

Minimum temperature at power-up:

-15°C (5°F).

Cooling method: Forced convection

NOTE

The drive can be powered up and run at a minimum temperature of -10° C (14° F).

9.4 Storage

Storage temperature

Size A to D:

-40 to +60°C (-40 to +140°F) for 12 months max

Size 2 to 6:

-40 (-40°F) to +50°C (122°F) for long term storage, or to +70°C (158°F) for short term storage.

Storage time

Storage time is 2 years.

Electrolytic capacitors in any electronic product have a storage period after which they require reforming or replacing.

The DC bus capacitors have a storage period of 10 years.

The low voltage capacitors on the control supplies typically have a storage period of 2 years and are thus the limiting factor.

Low voltage capacitors cannot be reformed due to their location in the circuit and thus may require replacing if the drive is stored for a period of 2 years or greater without power being applied.

It is therefore recommended that drives are powered up for a minimum of 1 hour after every 2 years of storage.

This process allows the drive to be stored for a further 2 years.

9.5 Altitude

Size A to D:

Rated altitude: 1000m (3250 ft)

Reduce the normal full load current by 1% for every 100m (325 ft) above 1000m (3250 ft) up to a maximum of 3000m (9750 ft).

Size 2 to 6:

Altitude range: 0 to 3,000m (9,900 ft), subject to the following conditions:

1,000m to 3,000m (3,300 ft to 9,900 ft) above sea level: de-rate the maximum output current from the specified figure by 1% per 100m (330 ft) above 1,000m (3,300 ft)

For example at 3,000m (9,900ft) the output current of the drive would have to be de-rated by 20%.

9.6 Environmental protection rating

The Digidrive SK is rated to IP20 pollution degree 2 (dry, non-conductive contamination only) (UL Type 1 / NEMA 1). However, it is possible to configure the drive to achieve IP54 rating (NEMA 12) at the rear of the heatsink for through-panel mounting (some current derating is required for size 2).

In order to achieve the high IP rating at the rear of the heatsink with Digidrive SK size 2, it is necessary to seal a heatsink vent by fitting the IP54 insert as shown in Figure 5-27 on page 62. For increased fan life time in a dirty environment the heatsink fan must be replaced with an IP54 rated fan on size 2 to 4. Sizes 5 and 6 are installed with IP54 heatsink fans as standard. Contact the supplier of the drive for details. Fitting of the IP54 insert and/or IP54 rated fan on size 2 requires output current derating to be applied, see section 2.5 Size 2 on page 31 for further details.

9.7 Humidity

Maximum relative humidity 95% non-condensing at 40°C (104°F).

9.8 Storage humidity

Maximum relative humidity 93%, 40°C, 4 days.

9.9 Pollution degree

Designed for operation in Pollution degree 2 environments (dry, nonconductive contamination only)

9.10 Materials

Flammability rating of main enclosure: UL94 - 5VA

Technical Derating curves Drive voltage DC bus Mechanical AC line Motor cable I/O Supply General EMC Options data and losses design installation reactors lengths data specification types levels

9.11 Corrosive gases

Concentrations of corrosive gases must not exceed the levels given in:

- Table A2 of EN 50178:1998
- Class 3C2 of IEC 60721-3-3

This corresponds to the levels typical of urban areas with industrial activities and/or heavy traffic, but not in the immediate neighborhood of industrial sources with chemical emissions.

9.12 Vibration

9.12.1 Random

Standard: In accordance with IEC60068-2-64 and IEC60068-2-36:

Test Fh

Severity: 1.0 m²/s³ (0.01g²/Hz) ASD from 5 to 20Hz, -3dB/octave

from 20 to 200Hz

Duration: 30 minutes in each of 3 mutually perpendicular axes.

9.12.2 Sinusoidal

Standard: IEC 60068-2-6: Test Fc

Frequency range: 2 to 500Hz

Severity: 3.5mm peak displacement from 2 to 9Hz

10m/s² peak displacement from 9 to 200Hz 15m/s² peak displacement from 200 to 500Hz

Sweep rate: 1 octave/minute

Duration: 15 minutes in each of 3 mutually perpendicular

axes.

9.12.3 Bump

Standard: IEC60068-2-29: Test Eb Severity: 18g, 6ms, half sine

Number of bumps: 600 (100 in each direction of axes)

9.13 Frequency accuracy

0.01%

9.14 Resolution

0.1Hz

9.15 Output frequency range

0 to 1500Hz

9.16 Starts per hour

Electric starts

With the supply permanently connected the number of electronic motor starts per hour is only limited by motor and drive thermal limits.

Power starts

The number of starts by connection of the ac supply is limited. The start up circuit will allow for three consecutive starts at 3-second intervals on initial power up. Exceeding the rated number of starts per hour, presented in the table below, could result in damage to the start up circuit.

Drive frame size	Maximum AC line starts per hour evenly spaced in time		
A, B, C, D and 2 to 6	20		

9.17 Start-up time

The soft-start circuit must charge the DC bus and SMPS outputs and stabilise to allow the control processor to start operation in the following times:-

[Orive frame size	Voltage	Maximum time taken to charge DC bus and SMPS outputs to stabilise		
	Α	110 and 200	1s		
	В	110	1.5s		
	B and C	200	2s		
	B and C	d C 400	1s		
	D	All	1s		
I	2 to 6	All	4s		

9.18 Serial communications

Modbus RTU

9.19 Switching frequencies

The software allows for the following switching frequencies:

Drive size	Voltage rating	3kHz	6kHz	12kHz	18kHz
A, B & C	200	√	√	√	V
B & C	400	V	√	√	
D	All	V	√	V	
2	All	V	√	√	
	SK 11 TL and SK 16 TL	√	√	√	
3	SK 22 T and SK 27 T	V	V	√	
	SK 33 T	V	√	√	
	SK 3.5 TM to SK 22 TM	V	V		
4	All	V	√		
5	All	V	√		
6	All	V	1		

NOTE

With drive firmware V01.07.01 onwards, the size C 400V drive will have an actual switching frequency of 3kHz when the output frequency is below 6Hz.

9.20 Harmonics

The Digidrive SK industrial AC variable speed drives are classified as class A professional equipment as defined in BS EN 61000-3-2:2006. Drives with input power equal to or below 1kW that do not meet the requirements of EN 61000-3-2:2006 are to be corrected, to ensure compliance, at the point of installation using suitable AC line chokes. See 7.2 (Reactor current ratings)

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

9.21 Acoustic noise

Frame	Power ratings	Condition	Max SPL measurement (dBA)
Α	All ratings	N/A	None contributed by drive (no fan)
В	≤0.75kW	N/A	None contributed by drive (no fan)
В	≥1.1kW	rd mode, fan on	50
С	All ratings	rd mode, fan on	53

Size	Max speed dBA	Min speed dBA
D & 2	54	35
3	56	43
4	53	
5	72	
6	72	

Derating curves and losses DC bus Motor cable Supply types Technical Drive voltage Mechanical AC line General I/O specification **EMC** Options design data levels installation reactors lengths data

10 I/O specification

The control circuits are isolated from the power circuits in the drive by basic insulation (single insulation) only. The installer must ensure that the external control circuits are insulated from human contact by at least one layer of insulation (supplementary insulation) rated for use at the AC supply voltage.

If the control circuits are to be connected to other circuits classified as Safety Extra Low Voltage (SELV) (e.g. to personal computer), an additional isolating barrier must be included in order to maintain the SELV classification.

0V common

T2 Analog input 1 (A1)	either voltage or current
Voltage: Current input	0 to 10V: mA as parameter range
Parameter range	4-20, 20-4, 0-20, 20-0, 420, 204, Volt
Scaling	Input range automatically scaled to Pr 01 (<i>Minimum set speed</i>) to Pr 02 (<i>Maximum set speed</i>)
Input impedance	200Ω (current): 100kΩ (voltage)
Resolution	0.1%
Accuracy	± 2%
Sample time	6ms
Absolute maximum voltage range	+35V to -18V with respect to 0V common

Т3	+10V reference output			
Maximum output current		5mA		
Protection		Tolerates continuous short circuit to 0V		
Accuracy		± 2%		

T4 Analog input 2 (A2)	, either voltage or digital input		
Voltage: Digital input	0 to +10V: 0 to +24V		
Scaling (as voltage input)	Input range automatically scaled to Pr 01 <i>Minimum set</i> speed / Pr 02 <i>Maximum set speed</i>		
Input impedance	100kΩ (voltage): 6k8 (digital input)		
Resolution	0.1%		
Accuracy	± 2%		
Sample time	6ms		
Nominal threshold voltage	+10V (positive logic only)		
Absolute maximum voltage range	+35V to -18V with respect to 0V common		

T5 T6 Status relay - Drive	Status relay - Drive ok (Normally open)			
Contact voltage rating	240Vac 30Vdc			
Contact maximum current rating	2Aac 240V 4Adc 30V resistive load (2A 35Vdc for UL requirements) 0.3Adc 30V inductive load (L/R = 40ms)			
Contact minimum recommended rating	12V 100mA			
Contact isolation	1.5kVac (over voltage category II)			
Update time	1.5ms			
Operation of contact	OPEN - AC supply removed from drive AC supply applied to drive with drive in tripped condition. CLOSED - AC supply applied to drive with drive in a 'ready to run' or 'running' condition (not tripped)			

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

Provide fuse or other over-current protection in status relay circuit.

A flyback diode should be installed across inductive loads connected to the status relay.

B1	Analog voltage outpu	Analog voltage output - Motor speed		
Voltage output		0 to +10V		
Scaling		0V represents 0Hz/rpm output +10V represents the value in Pr 02 , maximum set speed		
Maximum output current		5mA		
Resolution		0.1%		
Accuracy		± 5%		
Update time		6ms		
Protection		Tolerates continuous short circuit to 0V		

B2 -	+24V output	
Maximum output current		100mA
Protection		Tolerates continuous short circuit to 0V
Accuracy		± 15%

Digital output - Z	Digital output - Zero speed (or digital input)		
Voltage range	0 to +24V		
Maximum output current	50mA at +24V (current source)		
Output impedance	6.8kΩ		
Update time	1.5ms		
Absolute maximum voltage range	+35V to -1V with respect to 0V common		

NOTE

The total available current from the digital output plus the +24V output is 100mA. Terminal B3 can also be configured as a digital input, frequency output or PWM output. Refer to the *Digidrive SK Advanced User Guide* for more information.

Digital Input - Run For Digital Input - Run Ro	Digital Input - Enable/Reset */** Digital Input - Run Forward ** Digital Input - Run Reverse ** Digital Input - Local/Remote speed reference select (A1/A2)		
Logic	Positive logic only		
Voltage range	0 to +24V		
Input impedance	6.8kΩ		
Sample time	1.5ms		
Nominal threshold voltage	+10V		
Absolute maximum voltage range	+35V to -18V with respect to 0V common		

Terminal B7 can also be configured as a thermistor input or frequency input. Refer to the Digidrive SK Advanced User Guide for more information.

NOTE

If the drives enable terminal is opened, the drives output is disabled and the motor will coast to a stop. The drive will not re-enable for 1s after the enable terminal is closed again.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

10.1 Drive reset

*Following a drive trip, opening and closing the enable terminal will reset the drive. If the run forward or run reverse terminal is closed, the drive will run straight away.

**Following a drive trip and a reset via the stop/reset key, the enable, run forward or run reverse terminals will need to be opened and closed to allow the drive to run. This ensures that the drive does not run when the stop/reset key is pressed.

The enable, run forward and run reverse terminals are level triggered apart from after a trip where they become edge triggered. See * and ** above.

If the enable and run forward or enable and run reverse terminals are closed when the drive is powered up, the drive will run straight away up to a set speed.

If both the run forward and run reverse terminals are closed, the drive will stop under the control of the ramp and stopping modes set in Pr 30 and Pr 31.

on the destination/source parameter of the digital or analog inputs/ outputs.

These sample/update times are the sample or update times for the control microprocessor. The actual sample/update time maybe slightly longer due to the design of the Digidrive SK.

10.3 Task routine times

At the beginning of each menu, there is a single line parameter description and this contains the update rate for each parameter. This time signifies the task routine time in the software that the parameter is updated on. For a background task, the time depends on processor loading i.e. what functions the drive is carrying out and what advanced menus are being used.

10.2 Sample/update times

The sample/update times shown in the control terminal specification within the *Digidrive SK Technical Guide* are the default sample/update times for the default terminal set-up. The sample/update time depends

Update rate	Microprocessor update time	Comments
2ms	2ms	Updated every 2ms
5ms	5ms	Updated every 5ms
21ms	21ms	Updated every 21ms
128ms	128ms	Updated every 128ms
Reset	N/A	Destination/source parameter changed on a Reset
В	Background	Undeted as a background took Undete sate descende
BR	Background read	Updated as a background task. Update rate depends on processor loading.
BW	Background write	on processor loading.

From practical tests carried out:

Condition	Minimum ms	Maximum ms	Average ms
Time for drive to respond to a run command	4.1	5.62	5.02
Time for the drive to respond to a stop command	2.82	3.94	3.31
Time for the drive to respond to a step change in analog input voltage			7.93

Technical Derating curves Drive voltage DC bus Mechanical AC line Motor cable General I/O Supply types **EMC** Options and losses design installation reactors lengths specification data data

11 Supply types

All drives are suitable for use on any supply type i.e. TN-S, TN-C-S, TT and IT.

- Supplies with voltage up to 600V may have grounding at any potential, i.e. neutral, centre or corner ("grounded delta")
- Supplies with voltage above 600V may not have corner grounding Drives are suitable for use on supplies of installation category III and lower, according to IEC60664-1. This means they maybe connected permanently to the supply at its origin in a building, but for outdoor installation additional over-voltage suppression (transient voltage surge suppression) must be provided to reduce category IV to category III.

Operation with IT (ungrounded) supplies:

Special attention is required when using internal or external EMC filters with ungrounded supplies, because in the event of a ground (earth) fault in the motor circuit, the drive may not trip and the filter could be over-stressed. In this case, either the filter must not be used (removed) or additional independent motor ground fault protection must be provided.

For instructions on removal, refer to section 6.2 *Internal EMC filter* on page 79.

For details of ground fault protection contact the supplier of the drive.

A ground fault in the supply has no effect in any case. If the motor must continue to run with a ground fault in its own circuit, then an input-isolating transformer must be provided and if an EMC filter is required it must be located in the primary circuit.

Unusual hazards can occur on ungrounded supplies with more than one source, for example on ships. Contact the supplier of the drive for more information.

Table 11-1 Behavior of the drive in the event of a motor circuit ground (earth) fault with an IT supply

Drive size	Internal filter only	External filter (with internal)				
2	Drive trips on fault	Drive trips on fault				
3	May not trip – precautions required	Drive trips on fault				
4 to 6	May not trip – precautions required	May not trip – precautions required				

11.1 AC supply requirements

Single phase drives

Single phase - Between one phase and neutral of a star connected three phase supply.

- Between two phases of a three phase supply.

Three phase models

Three-phase star or delta supply of the correct voltage.

Dual rated models

Any of the above supplies can be used.

Maximum supply imbalance: 2% negative phase sequence (equivalent to 3% voltage imbalance between phases).

11.2 Safety

Electric shock risk

The voltages present in the following locations can cause severe electric shock and may be lethal:

- · AC supply cables and connections
- · DC and brake cables and connections
- · Output cables and connections
- · Many internal parts of the drive, and external option units

Unless otherwise indicated, control terminals are single insulated and must not be touched.

Isolation device

The AC supply must be disconnected from the drive using an approved isolation device before any cover is removed from the drive or before any servicing work is performed.

STOP function

The STOP function does not remove dangerous voltages from the drive, the motor or any external option units.

Stored charge

The drive contains capacitors that remain charged to a potentially lethal voltage after the AC supply has been disconnected. If the drive has been energized, the AC supply must be isolated at least ten minutes before work may continue.

Normally, the capacitors are discharged by an internal resistor. Under certain, unusual fault conditions, it is possible that the capacitors may fail to discharge, or be prevented from being discharged by a voltage applied to the output terminals. If the drive has failed in a manner that causes the display to go blank immediately, it is possible the capacitors will not be discharged. In this case, consult Control Techniques or their authorized distributor.

Equipment supplied by plug and socket

Special attention must be given if the drive is installed in equipment which is connected to the AC supply by a plug and socket. The AC supply terminals of the drive are connected to the internal capacitors through rectifier diodes which are not intended to give safety isolation. If the plug terminals can be touched when the plug is disconnected from the socket, a means of automatically isolating the plug from the drive must be used (e.g. a latching relay).

11.3 Cables

Recommended cable sizes are given in Chapter 1 *Technical data* on page 5. They are only a guide; refer to local wiring regulations for correct size of cables. In some cases, a larger cable size is required to avoid excessive voltage drop.

Use 105°C (221°F) (UL 60/75°C temp rise) PVC-insulated cable with copper conductors having a suitable voltage rating, for the following power connectors:

- AC supply to external EMC filter (when used)
- · AC supply (or external EMC filter) to drive
- Drive to motor
- · Drive to braking resistor

Technical Derating curves Drive voltage DC bus Mechanical AC line Motor cable General **EMC** Options data and losses design installation reactors lengths data specification levels

Motor cables

The recommended output cable sizes assume that the motor maximum current matches that of the drive. Where a motor of reduced rating is used, the cable rating may be chosen to match that of the motor. To ensure that the motor and cable are protected against overload, the drive must be programmed with the correct motor rated current.

11.4 **Fuses**

The AC supply to the drive must be installed with suitable protection against overload and short circuits. Chapter 1 Technical data on page 5 shows the recommended fuse ratings. Failure to observe this requirement will cause risk of fire.

A fuse or other protection device must be included in all live connectors to the AC supply.

An MCB (miniature circuit breaker) or MCCB (moulded case circuit breaker) with type C tripping characteristics maybe used in place of fuses as long as the fault clearing capacity is sufficient for the installation. On Digidrive SK sizes 2 and 3 an MCB/MCCB of type C maybe used in place of fuses under the following conditions:

- The fault-clearing capacity must be sufficient for the installation.
- The drive must be mounted in an enclosure which meets the requirements for a fire enclosure.

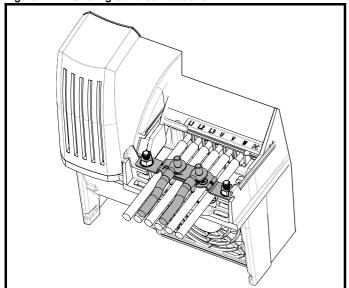
NOTE

If a MCB is used it will not meet UL listing requirements.

Fuse types

Europe: Type gG HRC fuses complying with EN60269 parts 1 and 2 (BS88)

USA: Bussman Limitron KTK series, class CC or class J fast acting fuses up to 30A, class J above 30A.


11.5 **Ground connections**

The drive must be connected to the system ground of the AC supply. The ground wiring must conform to local regulations and codes of practice.

The ground loop impedance must conform to the requirements of local safety regulations. The ground connections must be inspected and tested at appropriate intervals.

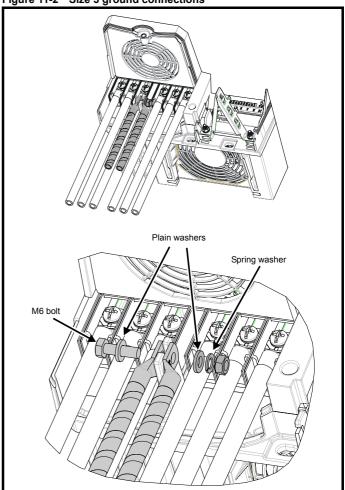

On Digidrive SK size 2, the supply and motor ground connections are made using the grounding bridge that locates at the bottom of the drive.

Figure 11-1 Size 2 ground connections

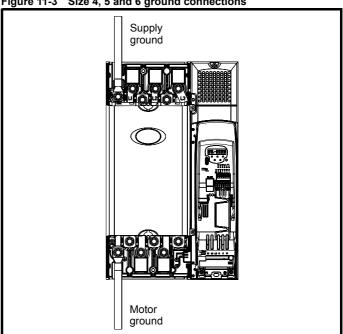

On Digidrive SK size 3, the supply and motor ground connections are made using an M6 nut and bolt that locates in the fork protruding from the heatsink between the AC supply and motor output terminals.

Figure 11-2 Size 3 ground connections

On Digidrive SK size 4, 5 and 6, the supply and motor ground connections are made using an M10 bolt at the top (supply) and bottom (motor) of the drive.

Figure 11-3 Size 4, 5 and 6 ground connections

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

The supply and motor ground connections to the drive are connected internally by a copper conductor with a cross-sectional area given below:

size 4: 19.2mm² (0.03in², or slightly bigger than 6 AWG)

size 5: 60mm² (0.09in², or slightly bigger than 1 AWG)

size 6: 75mm² (0.12in², or slightly bigger than 2/0 AWG)

This connection is sufficient to provide the ground (equipotential bonding) connection for the motor circuit under the following conditions:

To standard	Conditions
	Supply phase conductors having cross-sectional area not exceeding:
IEC 60204-1 & EN 60204-1	size 4: 38.4mm ²
EN 60204-1	size 5: 120mm ²
	size 6: 150mm ²
NFPA 79	Supply protection device rating not exceeding: size 4: 200A size 5: 600A size 6: 1000A

If the necessary conditions are not met, an additional ground connection must be provided to link the motor circuit ground and the supply ground.

Use of RCDs - residual current device

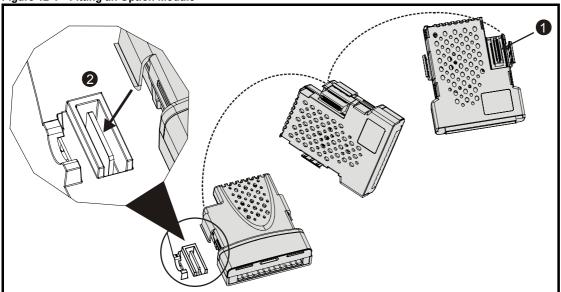
There are three common types of RCD/ELCB

Type AC - detects AC fault currents

Type A - detects AC and pulsating DC fault currents (provided the DC current reaches zero at least once every half cycle)

Type B - detects AC, pulsating DC, and smooth DC fault currents

- · Type AC should never be used with inverter drives
- Type A can only be used with single phase drives
- Type B must be used with three phase drives.


It is recommended that only Type B RCDs be used with inverter drives

If an external EMC filter is used, a delay of at least 50ms should be incorporated in the RCD to ensure spurious trips are not seen. The leakage current is likely to exceed the trip level if all of the phases are not energized simultaneously.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

12 Options

Figure 12-1 Fitting an Option Module

All Digidrive SK Solutions Modules are color-coded, in order to make identification easy. The following table shows the color-code key and gives further details on their function.

Туре	Option	Color	Name	Further details	Minimum option firmware version	Unidrive SP compatible ?
		Purple	SM-PROFIBUS-DP- V1	PROFIBUS-DP-V1 option PROFIBUS-DP-V1 adapter for communication with Digidrive SK	03.00.00	Yes
		Medium Grey	SM-DeviceNet	DeviceNet option DeviceNet adapter for communication with Digidrive SK	03.00.00	Yes
		Dark Grey	SM-INTERBUS	INTERBUS option INTERBUS adapter for communication with Digidrive SK	03.00.00	Yes
Fieldbus*		Light Grey	SM-CANopen	CANopen option CANopen adapter for communication with Digidrive SK	03.00.00	Yes
		Beige	SM-Ethernet	Ethernet option Ethernet adapter for communication with Digidrive SK	01.00.00	Yes
		Pale green	SM-LON	LonWorks option LonWorks adapter for communications with Digidrive SK	01.00.00	Yes
		Brown Red	SM-EtherCAT	EtherCAT option EtherCAT adapter for communications with Digidrive SK	01.00.00	Yes

Technical	Derating curves	Drive voltage	DC bus	Mechanical		AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

Туре	Option	Color	Name	Further details	Minimum option firmware version	Unidrive SP compatible ?
		Dark Yellow	SM-I/O Lite	I/O Lite option Increases the I/O capability by adding the following to the existing I/O in the drive: • ±10V bi-polar / 4-20mA analog input • 0-10V / 4-20mA analog output • Digital inputs x 3 • Encoder speed reference input (A, /A, B, /B) • Relay x 1	01.01.07	Yes
		Dark Red	SM-I/O Timer	Timer I/O option Same features as SM-I/O Lite, but with the addition of a battery backed-up real time clock.	01.01.07	Yes
Extended IO*		Olive	SM-I/O 120V	Additional I/O conforming to IEC 1131-2 120Vac 6 digital inputs and 2 relay outputs rated for 120Vac operation	01.00.01	Yes
	Turquoise		SM-I/O PELV	Isolated I/O to NAMUR NE37 specifications For chemical industry applications 1 x Analog input (current modes) 2 x Analog outputs (current modes) 4 x Digital input / outputs, 1 x Digital input, 2 x Relay outputs	03.01.03	Yes
		Cobalt Blue	SM-I/O 24V Protected	Additional I/O with overvoltage protection up to 48V 2 x Analog outputs (current modes) 4 x Digital input / outputs, 3 x Digital inputs, 1 x Relay output	03.01.03	Yes
		Yellow	SM-I/O 32	Additional I/O with thirty two Digital input lines 32 x Digital input / outputs.	01.00.00	Yes
		Black	SmartStick	SmartStick option Upload drive parameters to the SmartStick for storage or for easy set-up of identical drives or downloading to replacement drives		No
Automation		White	LogicStick	LogicStick option The LogicStick plugs into the front of the drive and enables the user to program PLC functions within the drive. (The LogicStick can also be used as a SmartStick) (The LogicStick guard is now supplied with the LogicStick)		No
	6	Black	LogicStick Guard Kitbag	The LogicStick guard protects the Logicstick when installed to a drive (set of 25)		No
Keypad	9000		SM-Keypad Plus	LCD keypad display option Remote panel mounting LCD multilingual text keypad display to IP54 (NEMA 12) with additional help key	04.03.01	Yes
Neypau			SK-Keypad Remote	LED keypad display option Remote panel mounting LED display to IP65 (NEMA 12) with additional function key	01.00.00	No

data an	d losses	levels	design	installation	EMC	reactors	lengths	data	specifica	ation	types	Options
Туре	Opt	ion	Color	Name		Further details				opt firm	mum tion ware sion	Unidrive SP compatible ?
				EMC Filters		These additional filters are designed to operate together with the drive's own integral EMC filter in areas of sensitive equipment						No
EMC				AC input line reactors		To reduce supply harmonics						No
Cabla	- Cuer			SK-Bracket		Cable management bracket						No
Cable management**				UL type 1 kit		Bottom metal gland plate, top cover and side covers to allow the drive to comply with the requirements of UL type 1 / NEMA 1						No
SK Cover kit*				Cover k		The additional cover kit will increase the environmental protection of the top face to IP4X in vertical direction.						No
	Q m)m V		CT Comms cable		Cable with isolo converter. For drive when using	connecting F	C/Laptop to	the			Yes
Communication	ns	•		CT USB Comms cable		Cable with isolation RS232 to RS485 converter. For connecting PC/Laptop to the drive when using CTSoft or SyPTLite						Yes
	FREE			CTSoft		Software for PC or Laptop which allows the user to commission and store parameter settings			er	01.0	4.01	Yes
	SCILW	die		SyPTLit		Software for Pouser to program				01.0	2.02	Yes

Braking resistor

size 2

AC line

Motor cable General

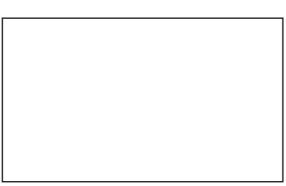
Optional internal braking resistor for Digidrive SK

I/O

Mechanical

Braking resistor

Technical Derating curves Drive voltage DC bus


Yes

^{*}Not compatible with size A
** Not available for size 2 to 6.

Index

A	М
	MCB
AC input line reactors	MCCB
Air flow	Motor cable - interruptions
All 110W0, 1, 0, 14, 13, 11, 10	Motor isolator-switch 100
В	Mounting 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 60
Braking resistor5, 6, 7, 11, 14, 15, 17, 68, 69, 70, 71, 99, 118	Mounting bracket
Brown-out	Wodning bracket
5.01.1.00	N
C	NEMA 1256, 61, 68, 107
Cable clamp100	NEMA rating61, 107
Cable clearances103	3, 1
Cables	0
Calculating76	Output contactor
Conduit Boxes57, 66	Overload5, 6, 7, 9, 10, 12, 70
Contactor106	_
Control	Р
Cooling fan	Power 5, 6, 7, 10, 12, 14
Current	n.
Current limit12	R
D	Ramp
D	Ratings
DC bus5, 6, 7, 12, 14, 16, 40, 41, 42, 43, 70	RCD
DIN rail	Resolution
E	Routine maintenance
Earth leakage circuit breakers residual current device101	\$
EMC118	Sample time110
EMC - Compliance with generic emission standards98	Scaling110, 111
EMC - General requirements102	Sealed enclosure - sizing
EMC - Variations in the wiring99	Shielding99
EMC filter5, 6, 7	Shock44, 45
Emission80	SK-Bracket
Enclosure75	SK-Keypad Remote
F	SmartStick
	SM-Keypad Plus
Fan	Spacing
Ferrite ring	Supply
Fire enclosure	Supply imbalance
Fuses	Surge suppression
ruses	Surge suppression for digital and unipolar inputs and outputs97
G	Switching frequency12, 18, 22, 90, 105
Grommets70	Ownorming inequation
Ground connections	T
Grounding99	Terminal block in the enclosure
Grounding bracket54, 55, 100	Thermal overload relay72
Grounding bridge114	Trip
Grounding clamp100	·
Grounding link bracket101	U
	UL 39, 68, 118
1	V
Inductance	
Induction motors9	Vibration44, 45
Input impedance	Voltage
Inrush	Voltage range111
IP54	W
Isolator switch100	Weight
L	7.0.3 0, 0, 7, 10, 12, 14
Lifting bracket60	
LogicStick117	
-	

MOTEURS LEROY-SOMER 16015 ANGOULÊME CEDEX - FRANCE

338 567 258 RCS ANGOULÊME Simplified Joint Stock Company with capital of 62, 779, 000 \in